芳炔烯基化制烯基芳香化合物用硫酸化的介孔镧锆固体超强酸催化剂的织构和酸性质调控研究(英文)
本文选题:介孔固体酸 + 烯基化 ; 参考:《催化学报》2016年08期
【摘要】:烯基芳香化合物作为重要的精细化学品及中间体在医药、染料、农药、香料、新型高分子材料、天然产品等化学工业领域占据显著地位.芳香化合物与烯基化合物进行反应是该化合物的经典合成方法,但其存在诸多缺陷:(1)芳环需要预活化,如卤代、三氟甲磺酸取代等;(2)产生氢卤酸和无机盐废物,污染环境;(3)原子经济性差.如何高效绿色合成烯基芳香化合物已引起国际学术界的极大兴趣.近年来发现的芳香化合物与炔的烯基化,亦称炔的氢芳化,被认为是颇具应用前景的简单、清洁、原子经济的烯基芳香化合物合成新路线.与烯基芳香化合物的经典合成路线相比,经由芳香化合物与炔的烯基化来合成该目标化合物具有如下优点:(1)芳环无需预活化;(2)不产生氢卤酸和无机盐,合成过程环境友好;(3)原子经济性好(100%).因此,采用芳香化合物与炔的烯基化路线来合成烯基芳香化合物得到了国际学术界的广泛关注.芳香化合物与炔的烯基化反应主要经由两种路径:(1)活化芳环,形成σ-芳基金属络合物;(2)活化炔基,形成烯基阳离子.活化芳环烯基化催化剂的研究主要集中在贵金属盐、贵金属配合物或有机金属.采用贵金属或有机金属催化,活性高、选择性好,但存在价格高、多需昂贵配体、分离和催化剂回收困难、操作条件苛刻等问题,缺乏实用性.酸催化活化炔基是芳香化合物烯基化反应的另一途径.酸催化芳烃烷基化已得以广泛而深入地研究,并在化学工业中占据着突出的历史地位,但酸催化烯基化相关文献报道尚少.相对于酸催化的烷基化,烯基化面临更多挑战.尽管如此,成本低、实用性强的酸催化烯基化路线仍得到了国际学术界的极大关注.但是,仍存在腐蚀设备、污染环境、催化效率差、收率低、催化剂分离困难及炔聚合严重等不足之处.因此,开展清洁、高效、实用的新型烯基化固体酸催化剂的研究意义深远.微孔沸石分子筛克服了液体酸所固有的上述缺点,作为环境友好的固体酸催化剂在烷基化、酰基化等诸多反应中均得到了广泛应用,用于烯基化,存在底物适用范围窄、催化效率低、选择性差和炔聚合严重的问题.以介孔固体酸取代微孔沸石分子筛并结合催化剂微结构和酸性质调控,有望实现对反应底物和烯基化产品的扩散、炔的活化及芳烃与烯基阳离子之间的碰撞过程进行调控,从而解决现有固体酸催化该反应存在的问题.我们开展了芳烃与炔烃的付-克烯基化制烯基芳香化合物用硫酸化的介孔镧锆固体超强酸催化剂的织构和酸性质调控研究.通过介孔镧锆复合氧化物的制备过程参数,如模板剂和氨水的加入量、水热温度、水热时间的调节,来调控硫酸化的介孔镧锆固体超强酸催化剂的织构和酸性质,进而调控固体酸的烯基化催化性能.结果表明,介孔镧锆复合氧化物的制备过程参数对所制备的硫酸化的介孔镧锆固体超强酸催化剂的织构和酸性质影响显著,需要合适的模板剂和氨水的加入量、水热温度、水热时间,才能获得适宜的织构和酸性质.介孔镧锆复合氧化物的最佳制备条件为:模板剂与金属离子摩尔比0.18、氨水与金属离子摩尔比16、水热温度90oC、水热时间60h.相对于研究组先前报道的硫酸化的介孔镧锆固体超强酸催化剂,经织构和酸性质调控优化的硫酸化的介孔镧锆固体超强酸催化剂的催化活性和稳定性均得以显著提升.采用本文所构筑的固体酸催化剂,用于不同芳香化合物的烯基化,也展示出了良好的催化性能.研究结果表明,具有适宜织构和酸性质的介孔固体酸用于芳香化合物与炔烃的烯基化,来制备烯基芳香化合物,具有很好的发展前景.
[Abstract]:As an important fine chemical and intermediate, alkenyl aromatic compounds occupy a significant position in the fields of medicine, dyes, pesticides, spices, new polymer materials, natural products and other chemical industries. The reaction of aromatic compounds with alkenyl compounds is the classic synthesis method of the compound, but there are many defects in it: (1) the aromatics need to be pre activated. Such as halogenation, substitution of three fluorine mesylate and so on; (2) producing halogenic acid and inorganic salt waste, polluting the environment; (3) poor atomic economy. How efficient green synthesis of alkenyl aromatic compounds has aroused great interest in the international academic circle. In recent years, the aromatization of aromatic compounds and alkynes, also known as alkynes, is considered to be a promising application. A new route for the synthesis of alkenyl aromatic compounds in simple, clean, atomic economy. Compared with the classical synthetic route of alkenyl aromatic compounds, the synthesis of the target compound via aromatic compounds and alkynes has the following advantages: (1) no aromatics need to be preactivated; (2) no hydrogen halide and inorganic salts are produced, and the synthesis process is environmentally friendly; (3) atoms Good economic (100%). Therefore, the enyl aromatic compounds with aromatic compounds and alkynes have been widely concerned in the international academic circle. The alkylation of aromatic compounds and alkynes is mainly via two ways: (1) activating aromatic rings to form a sigma aryl foundation complex; (2) activating alkynyl, forming alkyl cation. Activation aromatics. The studies of cycloalkylation catalysts are mainly concentrated in precious metal salts, noble metal complexes or organic metals. They are catalyzed by precious metals or organometallic metals, are highly active and selective, but have high prices, more expensive ligands, difficult separation and catalyst recovery, harsh operating conditions, and lack of practicability. Acid catalyzed activation of alkynes is aromatic. Acid catalyzed alkylation of aromatic hydrocarbons has been widely and deeply studied and occupies a prominent historical position in the chemical industry, but there are few reports on alkylation related to acid catalyzed alkylation. Alkylation is faced with more challenges than acid catalyzed alkylation. Nevertheless, low cost and practical acid catalysis However, there are still some deficiencies in corrosion equipment, environmental pollution, poor catalytic efficiency, low yield, difficult separation of catalyst and serious alkyne polymerization. Therefore, the development of a clean, efficient and practical novel alkylated solid acid catalyst is of profound significance. As a environmentally friendly solid acid catalyst, it has been widely used in alkylation and acylation as a environmentally friendly catalyst. It is used in alkylation, with narrow application scope, low catalytic efficiency, poor selectivity and severe polymerization of alkynes. The microstructures and acid properties of the chemicals are regulated, and it is expected to realize the diffusion of reaction substrates and alkylated products, the activation of alkynes and the collision process between aryl and alkenyl cations, so as to solve the existing problems of the existing solid acid catalyzing the reaction. The study on the texture and acid properties of acidified mesoporous lanthanum zirconium solid superacid catalysts. Through the preparation process parameters of mesoporous lanthanum zirconium composite oxides, such as the addition of template and ammonia, hydrothermal temperature, and hydrothermal time regulation, the texture and acid properties of the sulfated mesoporous lanthanum zirconium solid superacid catalysts are regulated and regulated. The results show that the preparation process parameters of mesoporous lanthanum zirconium composite oxides have significant influence on the texture and acid properties of the sulfated mesoporous lanthanum zirconium solid superacid catalyst. The suitable formwork and ammonia water content, the hydrothermal temperature and the hydrothermal time can be used to obtain the suitable texture and acidity. The optimum preparation conditions for the mesoporous lanthanum zirconium composite oxide are: the molar ratio of template to metal ion 0.18, the molar ratio of ammonia to metal ions 16, the hydrothermal temperature 90oC and the hydrothermal time 60h. relative to the sulfated mesoporous lanthanum zirconium solid superacid catalyst previously reported by the research group, and the sulfated mesoporous lanthanum, which are optimized by the texture and acid properties. The catalytic activity and stability of the zirconium solid superacid catalyst have been greatly improved. The solid acid catalyst constructed in this paper has been used for the alkylation of different aromatic compounds and shows good catalytic performance. The results show that the mesoporous solid acids, which are suitable for texture and acid properties, are used in aromatic and alkyne alkenes. The preparation of alkenyl aromatic compounds is of great potential for development.
【作者单位】: 大连理工大学化工与环境生命学部精细化工国家重点实验室;
【基金】:financially supported by the National Natural Science Foundation of China (21276041) the Program for New Century Excellent Talents in University of Ministry of Education (NCET-12-0079) the Natural Science Foundation of Liaoning Province (2015020200) the Fundamental Research Funds for the Central Universities (DUT15LK41)~~
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 邴涓林,李效玉,,焦书科;环戊二烯基钠和环戊二烯基乙醇的合成和表征[J];北京化工学院学报(自然科学版);1994年01期
2 丁博;叶楚平;;9-乙烯基咔唑合成研究[J];化学工程与装备;2013年02期
3 王锋;刘国智;;2-乙烯基-2-(口恶)唑啉的合成[J];南京工业大学学报(自然科学版);1993年01期
4 李绍白,阎福林,王志伟;(Z)-3-丁烯基-4,5-二羟基苯酞的合成[J];化学研究与应用;1997年04期
5 刘军辉;吕科;杨荣杰;;笼形八乙烯基聚硅倍半氧烷的制备和表征[J];有机硅材料;2007年05期
6 丘昌隆;;环戊二烯基铊(Ⅰ)的化学[J];化学试剂;1986年06期
7 赵春禄 ,陈惠萱;高分子量聚N——乙烯基咔唑的合成[J];山西大学学报(自然科学版);1980年04期
8 邴涓林,李效玉,焦书科;含环戊二烯基的丙烯酸衍生物的合成和表征[J];聚合物乳液通讯;1994年01期
9 李必平;邹丛沛;;2-氯乙烯基二氯化硼的合成[J];四川大学学报(自然科学版);2006年04期
10 陈寿山,李金山,王积涛;双(烷基环戊二烯基)二硫氰基钛、锆、铪的合成[J];高等学校化学学报;1986年03期
相关会议论文 前10条
1 王汉奇;程f ;彭伟;;乙烯基砜表面化学反应动力学研究[A];中国化学会第29届学术年会摘要集——第01分会:表面物理化学[C];2014年
2 戴小军;龚波林;;原子转移自由基聚合乙烯基咪唑改性聚苯乙烯基树脂的制备和应用研究[A];西北地区第七届色谱学术报告会甘肃省第十二届色谱年会论文集[C];2012年
3 迟惠;薛冬桦;邙志国;徐昆;张文德;王丕新;;十二烯基琥珀酸淀粉酯的制备与结构的研究[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年
4 谭家能;李明浩;顾彦龙;;活性α-甲烯基羰基中间体的形成和捕捉[A];中国化学会第27届学术年会第06分会场摘要集[C];2010年
5 田文晶;周子南;;含氧类乙烯基共聚褥的序列结构[A];第七届全国波谱学学术会议论文摘要集[C];1992年
6 赵延川;胡明友;高兵;倪传法;胡金波;;氟烷基化与氟烯基化的相互关系[A];中国化学会第29届学术年会摘要集——第07分会:有机化学[C];2014年
7 谢宇明;丁明玉;;乙烯基硅球的一步合成及其色谱性能研究[A];中国化学会第29届学术年会摘要集——第02分会:分离分析及微、纳流控新方法[C];2014年
8 戴炜枫;张玺;张金明;王朝华;郎美东;;一步法由环酮类化合物与丙烯酰胺反应生成二环烯基内酰胺[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年
9 蒋硕健;李明谦;;(甲基)丙烯酸双环戊烯基酯与双环戊烯氧乙基酯的合成、性质与应用[A];第三届丙烯酸科技发展与应用研讨会论文集[C];1996年
10 刘自成;付琛;郭水良;许俊杰;温庭斌;;硼杂苯及1,2-氮硼杂环戊二烯基钌络合物的合成和反应性质研究[A];第十六届全国金属有机化学学术讨论会论文集[C];2010年
相关博士学位论文 前1条
1 张春波;含胆甾烯基和环己基苯基的二介晶化合物的合成和性质[D];延边大学;2006年
相关硕士学位论文 前8条
1 徐衍;通过碳镁化反应和转金属反应制备多取代烯基硼酸其应用的研究[D];苏州大学;2011年
2 左良斌;含氟烷基的3,4-乙烯基二氧噻吩的合成及聚合[D];东华大学;2004年
3 谷晓霞;多取代烯基砜的合成及其反应性研究[D];安徽师范大学;2007年
4 夏俊;(E)-α-芳基烯基Grignard试剂在高选择性合成反应中的应用[D];江西师范大学;2005年
5 郝文燕;(Z)-α-硅基烯基Grignard试剂在高选择性合成反应中的应用研究[D];江西师范大学;2004年
6 刘海兰;铜诱导的烯基锆酰胺化、亲电烯胺化反应研究[D];河北师范大学;2014年
7 祝文亲;乙烯基及多种烷基聚硅氧烷合成、表征及老化机理研究[D];北京化工大学;2014年
8 王克虎;带官能团苄基卤化锌与芳香二醛、肉桂醛以及与芳乙酮的烯基化反应的研究[D];西北师范大学;2004年
本文编号:2049682
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2049682.html