当前位置:主页 > 科技论文 > 化学论文 >

近红外光谱技术在婴幼儿营养米粉快速检测中的应用研究

发布时间:2018-06-28 20:20

  本文选题:近红外光谱技术 + 婴幼儿营养米粉 ; 参考:《东华理工大学》2017年硕士论文


【摘要】:虽然婴幼儿营养米粉中蛋白质、脂肪、膳食纤维、水分、灰分等的常规检测方法相对成熟、准确度高,但预处理过程复杂、试剂消耗量大、成本高、耗时长,且需要专用仪器和设备,制约了检测、生产及科研的效率。与常规检测技术相比,近红外光谱(NIR)技术具有高效、无需预处理、成本低、无损、绿色环保等优点,可同时测定多目标组分的含量。本课题采取近红外光谱技术,并结合化学计量学法,开展了婴幼儿营养米粉上述成分的定量分析研究。探讨了近红外光谱技术在预测建模中的重要问题,包括样品的采集和制备、试验参数的选择、光谱的采集、数据处理及模型建立等,最后验证建立的模型。主要研究内容与结论如下:1、本课题收集了2015年至2016年食品药品监督管理部门在江西省境内开展质量监管过程中抽检的婴幼儿营养米粉样品,品牌包括亨氏、每一、雅士利、贝因美、美庐、安培等,并从中抽取160批次,采用传统化学技术分别检定了其中的蛋白质、脂肪、膳食纤维、水分、灰分的含量,为近红外光谱定量分析模型的校正提供了基础。2、本课题采用近红外光谱技术同时检测了160个样品中蛋白质、脂肪、膳食纤维、水分和灰分的含量。对5项目标组分分别建立了数学模型,发现无论是定标集还是验证集,5项目标组分的定量值和定标模型预测值间的相关系数都在0.90以上,说明线性相关性较好;其次,标准分析误差比较接近,说明分析结果的稳定性好;另外,相对分析误差(RPD)均大于3,说明预测的精度高。以上研究结果表明,所建立的近红外光谱定量分析模型可较准确地测定婴幼儿米粉中的蛋白质、脂肪、膳食纤维、水分和灰分的含量。3、对已建立的近红外光谱定量分析模型进行了外部样品验证。采用近红外模型预测重新收集到的未参与模型建立的50个样品,对NIR和常规分析方法开展了t检验,得到样品中蛋白质、膳食纤维、脂肪、水分、灰分含量t值分别为-1.56、1.43、1.15、-1.03、0.98,均小于临界值t(0.05,50)=2.01,表明两种方法不存在显著性差异,一致性较好。4、本论文研究了近红外光谱法检测婴幼儿米粉中的蛋白质、脂肪、膳食纤维、水分和灰分成分的应用,为近红外光谱技术在婴幼儿营养米粉品质的无损检测和鉴定提供可行性依据,同时为后续食品和药品等的近红外分析研究和应用奠定了坚实的基础。
[Abstract]:Although the routine detection methods of protein, fat, dietary fiber, moisture, ash and so on are relatively mature and accurate, the pretreatment process is complicated, the reagent consumption is large, the cost is high and the time is long. Special instruments and equipment are required to restrict the efficiency of testing, production and scientific research. Compared with the conventional detection technique, NIR has the advantages of high efficiency, no pretreatment, low cost, nondestructive, green environmental protection and so on. It can be used to determine the content of multi-target components at the same time. In this paper, the quantitative analysis of the above components of infant nutritious rice flour was carried out by using near infrared spectroscopy and chemometrics. The important problems of near infrared spectroscopy in prediction modeling are discussed, including sample collection and preparation, selection of test parameters, spectrum acquisition, data processing and modeling, etc. Finally, the established model is verified. The main contents and conclusions of the study are as follows: 1. This subject collected samples of infant nutritious rice flour from 2015 to 2016 when the Food and Drug Administration carried out quality supervision and control in Jiangxi Province. The brands include Heinz, each, Yashili. Beinmei, Meilu, Ampere, etc., and took 160 batches from them. The contents of protein, fat, dietary fiber, water and ash were determined by traditional chemical techniques. It provides a basis for calibration of quantitative analysis model of near infrared spectroscopy. In this paper, the contents of protein, fat, dietary fiber, moisture and ash in 160 samples were simultaneously determined by near infrared spectroscopy. The mathematical models of the five target components are established respectively. It is found that the correlation coefficients between the quantitative values of the five target components and the predicted values of the calibration model are above 0.90, indicating that the linear correlation is good. The relative analysis error (RPD) is higher than 3, which indicates that the prediction accuracy is high. The results show that the model can accurately determine protein, fat and dietary fiber in infant rice flour. The content of water and ash. 3. The established NIR quantitative analysis model was verified by external samples. Near-infrared model was used to predict 50 recollected samples which were not involved in the establishment of the model. T test was carried out on NIR and conventional analysis methods to obtain protein, dietary fiber, fat and moisture in the sample. The ash content t values were -1.56C 1.15U -1.03U 0.98, which were less than the critical value t (0.05n 50) 2.01, which indicated that there was no significant difference between the two methods, and the consistency was good. This paper studied the determination of protein, fat and dietary fiber in infant rice flour by near infrared spectroscopy (NIR), and the results showed that there was no significant difference between the two methods in the determination of protein, fat and dietary fiber in infant rice flour. The application of moisture and ash components provides a feasible basis for the nondestructive testing and identification of the quality of infant nutritious rice flour by near infrared spectroscopy. It also lays a solid foundation for the further research and application of near-infrared analysis of food and medicine.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS210.7;O657.33

【参考文献】

相关期刊论文 前10条

1 李文龙;瞿海斌;;基于近红外光谱技术的“过程轨迹”用于中药制药过程监控的研究进展[J];中国中药杂志;2016年19期

2 冯艳春;易夏;胡昌勤;;制药工业中近红外光谱分析技术的重要标准和指导原则简介[J];中国医药工业杂志;2016年07期

3 白雁;郝敏;雷敬卫;谢彩侠;胡小莉;张迪文;;近红外光谱法快速测定白芍中水分及浸出物含量[J];中华中医药杂志;2016年04期

4 陈民;;近红外光谱分析技术在煤质分析中的应用[J];科技创新导报;2015年34期

5 王伟;张玉;王楠;王君虹;朱作艺;李雪;;基于傅里叶变换近红外光谱的奶粉品质优劣鉴别[J];浙江农业科学;2015年11期

6 宋英华;;红外光谱技术在环境安全领域中的应用与展望[J];能源与节能;2015年08期

7 穆同娜;庄胜利;赵玉琪;吴燕涛;于晓瑾;孙婷;;近红外光谱法快速检测婴儿配方奶粉中的脂肪酸含量[J];现代食品科技;2015年04期

8 何楚文;王立;;近红外光谱的发展背景及在石油行业中的应用[J];广州化工;2015年07期

9 潘璐璐;洪渊泉;陈智锋;赵连英;万昌江;苏日娜;董锁拽;;近红外光谱分析快速检测技术在丝棉混纺织物成分分析中的应用研究[J];科技通报;2015年01期

10 程文宇;管骁;刘静;;近红外光谱技术检测液态奶中微量三聚氰胺的可行性研究[J];食品与机械;2015年01期

相关硕士学位论文 前2条

1 赵希雷;谷物水分测定方法比较与分析[D];河南工业大学;2015年

2 潘菁;婴幼儿营养米粉配方优化及加工关键技术研究[D];江南大学;2012年



本文编号:2079234

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2079234.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ce731***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com