含金属分子体系的势能面构建与反应动力学研究
[Abstract]:The reaction between the alkali metal (or alkaline earth metal) and the halogen molecules has an important reaction mechanism "HarpoonMechanism", that is, the active electrons in the outer layer of the metal atoms jump first to the halogen molecules and form an unstable anion molecule, which will rapidly dissociate and form the metal containing the metal. In this paper, we use the Chebyshev wave packet method and the quasi classical trajectory method (QCT) to conduct a detailed kinetic study of the Ca + HCl (?) H + CaCl reaction in this paper. In this paper, we also use the LAN cable iterative method to obtain the HCaCl body. In addition, we have constructed a high-precision ab initio potential energy surface for the Li+HCl reaction and carried out full dimensional quantum dynamics calculation of the system. Our work mainly includes the following aspects: the kinetics of the 1.Ca + H/DCl reaction and the bound state energy level theory of the HCaCl system: Based on the VSGRA potential energy surface (J.Chem.P) Hys.122 (2005) 204307) we have first obtained the exact quantum reaction probability of the Ca + HCl reaction, and studied the isotopic effect of the reaction. Because of the existence of a deep potential well and the system containing two heavier atoms, we have met a great challenge in the process of calculation. The reaction probability shows a strong resonance phenomenon and the reaction probability increases with the increase of the collision energy. The Coriolis effect is not negligible for the reaction probability of the Ca + HCl reaction to J0. We also use the QCT method to obtain the reaction probability of the Ca + H/DCl reaction, and compare the probability of the reaction of the.QCT with the quantum reaction probability and the probability of the reaction. The quantum results are good, but the results of QCT fail to repeat the quantum resonance structure. By comparing the probability of reaction between Ca + HCl and Ca + DCl, we find that the zero energy effect plays an important role in the vicinity of the threshold energy. The differential reaction cross section and vibration distribution of the product are given by the QCT method. Through the analysis of the above results, we find that the indirect reaction mechanism is the main reaction mechanism of the Ca + HCl reaction. By using the LAN cable iteration method, 7716 energy levels of the potential energy surface deep potential well are obtained, and 254 energy levels with the lowest energy levels are recognized. The eigenenergy level distribution of low energy and high energy suggests that when the intrinsic energy level is lower than 12000cm-1, the wave function has a weak coupling mode. At the middle and high energy, the Fermi resonance leads to some slight distortion of the wave function, and the energy level spacing of these wave functions is very small.2. quasi classical trajectories and quantities. The theoretical study on the reaction and isotope reaction of H + CaCl (X 2 sigma +) to HCl + Ca (S) by wavelet packet method: we use the quasi classical trajectory (QCT) and quantum wave packet method to obtain the total angular momentum of H + CaCl (vi=0, ji=0) as J=0,10, and the reaction probability of 20, and the integral and differential reaction cross sections are obtained. When the quantum resonance effect is reproduced, the result of QCT is very good with the probability of the quantum reaction. Although the reaction is a exothermic reaction and the barrier height of the reaction is lower than the energy of the reactant channel, the reaction probability of the reaction J=0 has a threshold energy and a lower reaction probability near the threshold energy (0.1 eV). The reaction probability is divided into two different regions based on the size of the collision energy: the low energy region (0.35 eV) and the high energy region (0.35 eV). By analyzing the dynamic information of the two regions, we find that the reaction has different reaction mechanisms in the two regions. In the high energy region, the direct reaction mechanism is dominant. In addition, we also use the QCT method to obtain the vibrational distribution of the reaction products and the initial collision angle distribution. Based on the same potential energy surface, we also study the D + CaCl reaction with the method of QCT and the quantum wave packet. The quantum and QCT reaction probability of the inverse response to J = 0 is given, and the QCT side is used. The method obtained the integral of the reaction, the differential reaction cross section and the vibration distribution of the product. In the qualitative way, the isotope substitution will not change the basic kinetic characteristics of the system. Therefore, we have obtained the similar conclusion with the H + CaCl reaction: in the low energy (~ 0.4 eV), the indirect reaction mechanism is dominant, and the direct reaction mechanism is at high energy (~ 0.4 eV). On the quantitative basis, the isotope substitution can increase the reaction probability and the ab initio potential energy surface of the reaction section.3.LiHCl system to construct the quantum dynamics calculation with the reaction of Li + HCl (v=0, j=0-2) to LiCl + H: we have obtained 36654 ab initio data points using MRCI+Q/aug-cc-pV5Z method. Then the three spline fitting method is used for this method. Some data points are fitted to obtain the ground state adiabatic potential energy surface for the Li+HCl reaction. The result shows that the reaction is a exothermic reaction and the energy released is consistent with the experimental results, and its value is 5.63 kcal/mol (9 kcal/mol under the consideration of zero point energy). The potential barrier height of the potential energy surface is 2.99 kcal/mol (after considering the zero point energy, the barrier is high. " The Van Der Waals potential well characteristics at the entrance of the reaction channel are also consistent with the experimental data. We also found two other Van Der Waals potential wells and gave their structural characteristics. Finally, we use the Chebyshev wave packet method to give the integral reaction cross section and reaction rate of different rotation starting states. The results are all in good agreement with the experimental data.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O643.1
【相似文献】
相关期刊论文 前10条
1 商城;刘智攀;;自动化势能面搜索方法新进展[J];中国科学:化学;2013年12期
2 辛厚文,廖结楼;势能面上的分叉反应[J];科学通报;1994年03期
3 訾金栋,李淑兰;BEBO法计算活化势能的研究[J];山东师大学报(自然科学版);1998年03期
4 孙发增;;势能面—过渡状态理论的物理模型[J];安徽大学学报(自然科学版);1984年02期
5 卢英林,韦平;分子反应的势能面图示[J];纺织高校基础科学学报;1995年02期
6 陈茂笃,唐壁玉,韩克利,楼南泉;Cl+HD反应产物的极化与态分布(英文)[J];化学物理学报;2002年04期
7 孙延波,吴迪,李泽生,黄旭日,孙家锺;乙硼烷离子和自由基异构体重排与体系势能面的量子化学计算研究[J];高等学校化学学报;2002年09期
8 俞华根,沈守瑶;势能面的绘图程序[J];成都科技大学学报;1994年02期
9 韩克利,何国钟,楼南泉;势垒位置对产物转动取向的影响[J];化学物理学报;1996年06期
10 陈树滋,查昆薇;CO在Ni(100)面吸附模式的研究[J];高等学校化学学报;1992年06期
相关会议论文 前10条
1 傅碧娜;;复杂多原子反应的势能面构建和动力学研究[A];中国化学会第29届学术年会摘要集——第39分会:化学动力学[C];2014年
2 李全松;Annapaola Migani;Lluís Blancafort;;势能面交叉线上的光化学:光诱导的沃尔夫重排和聚集诱导发光效应[A];中国化学会第28届学术年会第13分会场摘要集[C];2012年
3 周琳森;谢代前;;水分子激发态鉛~1B_1从头算势能面[A];中国化学会第29届学术年会摘要集——第39分会:化学动力学[C];2014年
4 傅碧娜;;多原子复杂分子反应的势能面构建和动力学研究[A];第十三届全国化学动力学会议报告摘要集[C];2013年
5 张圣涛;米卫红;郝策;;Ca在C_(74)笼内的运动[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
6 潘胜;薛佳丹;郑旭明;;异丁烯醛激发态势能面交叉动力学研究[A];第十三届全国化学动力学会议报告摘要集[C];2013年
7 王悦;凤尔银;董书宝;黄武英;屈奎;;He-Na_2的从头算势能面及其动力学研究[A];第九届全国化学动力学会议论文摘要集[C];2005年
8 王满辉;孙孝敏;边文生;;基于一个H+SiH_4全维势能面的动力学分析[A];第九届全国化学动力学会议论文摘要集[C];2005年
9 孙志刚;;F+H_2反应的全域高精度势能面[A];中国化学会第29届学术年会摘要集——第39分会:化学动力学[C];2014年
10 吴广新;张捷宇;李谦;周国治;;H在MgH_2表面的吸附研究[A];2010年全国冶金物理化学学术会议专辑(上册)[C];2010年
相关博士学位论文 前10条
1 马永涛;范德华复合物OCS-He、CH_3F-Rg及CH_3F-H_2的摩斯长程势势能面和振转光谱的理论研究[D];吉林大学;2016年
2 贺非非;含能型分子的结构和稳定性的量子化学研究[D];吉林大学;2016年
3 侯丹;大振幅范德华混合物H_2O-Rg(He、Ne、Ar)及H_2-C_2H_2的势能面和振转光谱的理论研究[D];吉林大学;2016年
4 谭瑞山;含金属分子体系的势能面构建与反应动力学研究[D];山东大学;2017年
5 李绛;分子复合物中氢键和势能面的理论研究[D];四川大学;2003年
6 商城;势能面搜索新方法的发展及其在复杂非均相催化反应研究中的应用[D];复旦大学;2013年
7 蒋彬;从气相到金属表面的小分子势能面与量子动力学的理论研究[D];南京大学;2012年
8 林森;半导体小分子势能面及其光谱的理论研究[D];南京大学;2011年
9 朱华;Rg_n-N_2O型复合物的分子间势能面和振转光谱的理论研究[D];四川大学;2002年
10 王玲;单分子反应理论研究和势能面的构建[D];中国科学院研究生院(大连化学物理研究所);2006年
相关硕士学位论文 前10条
1 刘芳;磷键和卤键作用的理论研究[D];山东大学;2015年
2 肖晨霞;使用量子拓扑相图对势能面提出的“分子中的原子”量子理论观点[D];湖南师范大学;2015年
3 杨海琴;Ar-BeH(X~2Σ~+)体系的冷碰撞动力学研究[D];安徽师范大学;2015年
4 王申浩;Ar-D_2O体系四维势能面和光谱预测:v_2正则模相关[D];安徽师范大学;2015年
5 陈柳杨;构建多维化学反应势能面新方法[D];中国科学院研究生院(武汉物理与数学研究所);2016年
6 李琦;H+HLi体系势能面及动力学研究[D];山东师范大学;2016年
7 何珊珊;Ne-D_2O体系的四维势能面和v_2正则模下的红外光谱研究[D];安徽师范大学;2016年
8 夏修龙;偶氮类分子光致异构反应的势能面特征[D];四川大学;2002年
9 李安阳;小分子势能面的构建及算法研究[D];西北大学;2006年
10 王晓林;三原子反应体系势能面的动力学李代数方法[D];山东大学;2005年
,本文编号:2139671
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2139671.html