近红外发光双稀土—有机框架材料的设计合成及其荧光温度传感
[Abstract]:Temperature is an important parameter in the study of physiology and pathology. The reaction process between most of the cells in cells, such as cell apoptosis, neural signal transmission, ion transport and so on, is affected by temperature. Compared to the traditional contact temperature sensors, such as thermocouples, mercury thermometers, and so on, the fluorescence temperature sensing is due to Non contact, fast response, high sensitivity, not easy to be affected by strong electromagnetic interference and the advantages of fast moving objects and small size objects, has attracted wide attention. And the proportional fluorescence temperature sensing based on double luminescent center will not be affected by the concentration of the probe, the inhomogeneity of the luminescent center, and the photoelectricity of the light source and detector. The influence of excursion and other external factors, with high sensitivity and accuracy, is a hot spot of research. In this paper, near infrared light is not affected by biological tissue autofluorescence interference, less damage to biological tissue, penetration depth and so on, using the advantages of strong design of metal organic frame materials and the introduction of near infrared luminescence characteristics. Rare earth ions, designed and synthesized three kinds of bimetallic mixed ligand rare earth organic frame materials, and carried out a proportional fluorescence temperature sensing study near the physiological temperature. The main contents and results are as follows: a series of rare earth organic frames are prepared by the coordination of near infrared luminescent rare earth ions Nd3+, Yb3+ and organic ligand H3BTC (benzol three carboxylic acid). LnBTC (Ln=Nd, Yb, NdxYbi-x). At room temperature, the near infrared fluorescence properties of LnBTC (Ln=Nd, Yb, NdxYbi-x) are studied. When the Nd3+ absorption peak 808 nm excite Nd0.054Yb0.946BTC, the material exhibits both Nd3+ and characteristic emission peaks at the same time. Under this wavelength, the temperature is studied at the temperature of 288~323. In the range of temperature changing fluorescence spectra, the results show that the luminescence intensity ratio of Nd3+ and Yb3+ (INd/IYb) has a good linear relationship with the temperature, and the relative sensitivity is 0.830 to 1.187% K-1, and the physiological temperature fluorescence sensing can be realized. A series of near infrared light luminescence is designed and synthesized with H2BDC-F4 (tetrafluoroethyl two methylene acid) as the ligand. Soil organic frame material LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x). Due to the substitution of the C-F bond with the low phonon energy of the C-H bond in the ligand, the quenching of the near infrared light is effectively weakened, so that the ligand can light it through the "antenna effect" to the rare earth ion energy. Under the ligand absorption peak 303 nm, the emission spectra of LnBDC-F4 (Ln=Nd, Yb, NdxYbi-x) The characteristic emission peaks of the corresponding rare earth ions are all of them, and the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ in Nd0.711Yb0.289BDC-F4 (INd/1Yb) has a good linear relationship with the temperature in the low temperature region of 60~280 K. It can be applied to the temperature sensing of low temperature fluorescence. In addition, the nanometer size Nd0.577Yb0.423 under the near infrared light excitation of 808nm. The ratio of luminescence intensity of Nd3+ and yb3+ (INd/IYb) in BDC-F4 has a good linear relationship with the temperature in the temperature range of 293~313 K, and the relative sensitivity is 0.967-1.201% K-1, indicating that the material can be applied to physiological temperature fluorescence sensing. The near infrared luminescence temperature with high sensitivity is prepared with H3BTB (1,3,5- three (4- carboxy phenyl) benzene) as ligand. Degree sensing material Nd0.866Yb0.134BTB, the ratio of the characteristic luminescence intensity of Nd3+ and Yb3+ at 303~333 K temperature range (INd/lYb) has a good linear relationship with the temperature, and the relative sensitivity is 2.090 to 4.755% K-1, far higher than that of Nd0.054Yb0.946BTC and Nd0.577Yb0.423BDC-F4., and the material is both in water and in the physiological buffer solution. It is stable and has little biological toxicity, which indicates that the material has great application prospects in cell temperature sensing.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O627;TQ422
【相似文献】
相关期刊论文 前10条
1 李善有,张义;管式炉连续加热的温度测量方法[J];机械工人(热加工);1990年04期
2 杨世校;廖德庆;尤亚平;;裂解炉辐射炉管温度测量方法的改进[J];石油化工设备技术;1992年01期
3 ;高温气体的温度测量方法[J];化工自动化及仪表;1974年01期
4 ;磨削区温度测量方法的研究[J];上海纺织工学院学报;1979年04期
5 柳鸿星;马明恕;;平炉炉顶温度测量方法的改进[J];钢铁;1965年06期
6 胡和明;;气化炉温度测量方法的改进[J];化工自动化及仪表;1983年06期
7 张卫华;冰铜温度测量方法研究[J];江西铜业工程;1999年04期
8 刘文凯;张立武;;薄壁圆筒件车削温度测量方法研究[J];机械设计与制造;2008年08期
9 朴大植;实用颜色温度测量方法的研究[J];现代计量测试;1999年01期
10 高小兵,,王丽,张佳心;火焰电子温度测量方法的改进[J];燃烧科学与技术;1995年03期
相关会议论文 前1条
1 杨国腾;于艳华;杜永强;;聚合物基复合材料玻璃化转变温度测量方法的研究[A];面向航空试验测试技术——2013年航空试验测试技术峰会暨学术交流会论文集[C];2013年
相关硕士学位论文 前10条
1 练秀生;近红外发光双稀土—有机框架材料的设计合成及其荧光温度传感[D];浙江大学;2016年
2 李鹏;基于吸收光谱气体温度测量方法的研究[D];燕山大学;2009年
3 张桂敏;易燃易爆环境中的温度测量技术研究[D];长春理工大学;2014年
4 蒙建平;瞬态热辐射谱的时间分辨测量及其温度解析方法与技术研究[D];四川大学;2001年
5 李松林;非接触人体表面温度测量方法的研究[D];天津大学;2005年
6 张维克;爆炸场温度的多谱线测试方法研究[D];南京理工大学;2009年
7 万相奎;虚拟式多通道温度测试仪的设计与研发[D];重庆大学;2002年
8 张洪林;金刚石对顶砧原位温度测量方法的实验研究[D];吉林大学;2008年
9 方荣瑞;PCR仪温度检测及校准规范研究[D];中国计量学院;2012年
10 林立军;基于超声技术的气体温度测量方法的研究[D];燕山大学;2004年
本文编号:2146252
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2146252.html