基于统计机器学习的光谱识别技术
[Abstract]:With the launch of satellites, manned spaceships and international space stations, space target recognition is a prerequisite for the further development of space resources. It is very important to recognize the surface material of the space target effectively for the further recognition of the target. The scattering spectrum can effectively characterize the surface characteristics of the measured samples. Statistical machine learning provides a technical means to solve the problem of difficult classification and identification between samples. In this paper, based on scattering spectrum and four statistical machine learning algorithms, the recognition of spatial target materials is studied. The specific contents of the study are as follows: 1. The material scattering spectrum measurement system is set up, which can measure the scattering spectrum of material with multiple angles. The measured scattering spectra are preprocessed into three parts: denoising, calculating the bidirectional reflectance distribution function and normalization, and the material database. 2. Based on the theory of scattering spectrum and statistical machine learning algorithm, the algorithm framework of naive Bayesian classifier K nearest neighbor algorithm, error back propagation neural network and convolution neural network is established, and the program of. 3 is implemented by using MATLAB software. Based on scattering spectrum, combined with naive Bayesian classifier and K-nearest neighbor algorithm, error back-propagation neural network and convolution neural network, the pre-processed material scattering spectrum was classified and recognized. The recognition results are compared and analyzed. The results show that: (1) when the inclusion cosine and Euclidean distance are embedded in the K-nearest neighbor algorithm, because the linear and amplitude characteristics of the spectrum are taken into account, it has the characteristics of high precision and less time consuming. This method has some applicability in the field of recognition based on scattering spectrum. (2) because of the special network structure, the convolution neural network has the characteristics of less time consuming and higher precision. It has some advantages and applicability which is different from other methods.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V419;O657.3
【参考文献】
相关期刊论文 前10条
1 王安祥;吴振森;曹运华;;硅太阳能电池板的光谱BRDF测量及色度特性的研究[J];红外与激光工程;2013年11期
2 于洋;郝中骐;李常茂;郭连波;李阔湖;曾庆栋;李祥友;任昭;曾晓雁;;支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究[J];物理学报;2013年21期
3 徐姗姗;刘应安;徐f;;基于卷积神经网络的木材缺陷识别[J];山东大学学报(工学版);2013年02期
4 韩意;孙华燕;;空间目标光学散射特性研究进展[J];红外与激光工程;2013年03期
5 杨长才;田金文;叶瑾;尚轲;田昕;;天基光学成像系统空间目标成像模拟技术[J];红外与激光工程;2012年09期
6 刘正春;曾永年;何丽丽;吴孔江;靳文凭;;基于光谱归一化的变组分光谱混合分析(NMESMA)方法及其应用[J];遥感技术与应用;2012年02期
7 杨玉峰;吴振森;曹运华;;一种实用型粗糙面六参数双向反射分布函数模型[J];光学学报;2012年02期
8 袁艳;孙成明;黄锋振;赵慧洁;王潜;;深空背景下空间目标紫外特性建模方法研究[J];物理学报;2011年08期
9 孙成明;袁艳;张修宝;;深空背景下空间目标红外特性建模方法研究[J];物理学报;2010年10期
10 袁艳;孙成明;张修宝;赵慧洁;王潜;;姿态变化对空间目标可见光特性的影响分析[J];光学学报;2010年09期
相关博士学位论文 前1条
1 陈国庆;荧光光谱技术在食品安全监控中的应用研究[D];江南大学;2010年
相关硕士学位论文 前1条
1 白玉兵;复杂环境下雷达探测范围可视化研究[D];湖南大学;2013年
,本文编号:2172948
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2172948.html