当前位置:主页 > 科技论文 > 化学论文 >

基于卟啉酞菁金属配合物的无酶电化学传感器的构筑及性质研究

发布时间:2018-08-10 16:33
【摘要】:卟啉酞菁金属配合物具有大环共轭体系,具有独特的电学、光学和磁学性质。作为新型的功能材料,它们在分子荧光探针、分子信息存储和电化学传感器上具有潜在的应用价值,在材料科学领域拥有广阔的应用前景。近年来,在传感器领域,对基于卟啉酞菁金属配合物的新型材料的开发和研究已经成为了热点。本文内容主要包括以下几个部分:1.卟啉酞菁三层稀土配合物与氧化石墨烯混杂膜的制备及对H_2O_2的电化学传感性质研究设计合成了一种结构新颖的卟啉酞菁铕三层配合物(Pc)Eu(Pc)Eu[trans-T(COOCH3)2PP],并通过紫外可见吸收(UV-vis),核磁氢谱(1H NMR),质谱(MS)等对该三层配合物的分子结构进行了表征,通过电化学方法(DPV)测试配合物溶液发现该化合物具有优异的双极半导体性质,可以用于制备电化学传感器。用一种低成本简单方便可溶剂化处理的QLS方法制备了(Pc)Eu(Pc)Eu[trans-T(COOCH3)2PP]与氧化石墨烯(GO)的混杂多层膜。通过紫外可见吸收(UV-vis),偏振紫外可见吸收(Polarized UV-vis),X射线粉末衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM),电流-电压曲线(I-V)等测试对混杂膜的表面形貌和聚集性质进行了表征,结果表明,该混杂膜中,由于GO的模板作用,三层配合物分子具有更好的结晶性和分散性,混杂膜具有明显改善的表面形貌,聚集均匀且尺寸较小(大约70 nm),并且混杂膜具有更高的导电性,适合构筑电化学传感器。一系列电化学传感性质测试例如循环伏安曲线(CV),计时电流曲线(I-t)等表明,响应电流与H_2O_2的浓度呈极好的线性关系,且线性范围较宽为0.05-1800μM,响应时间很短为0.03 s·μM-1,检测限极低为0.017μM,灵敏度较好为7.4μA·m M-1。这个工作是迄今为止四吡咯基化合物无酶过氧化氢电化学传感器最好的结果。更重要的是,(Pc)Eu(Pc)Eu[trans-T(COOCH3)2PP]/GO/ITO电极具有极好的稳定性,重现性和选择性,显示了电化学活性的四吡咯基稀土三明治配合物与GO的结合在无酶电化学传感器领域的巨大潜能。2.具有电化学超分子识别性质的卟啉酞菁三层稀土配合物与杯芳烃混杂膜的制备及电化学传感性质研究设计合成了一种结构新颖的具有优秀电化学活性的混杂卟啉酞菁三层铕配合物(Pc)Eu(Pc)Eu[T(OH)PP],并通过紫外可见吸收(UV-vis),核磁氢谱(1H NMR),质谱(MS)等对该三层配合物的分子结构进行了表征。将此三层配合物与具有卓越超分子识别性质的杯[4]芳烃或杯[8]芳烃的混合溶液以低成本简单方便可溶剂化处理的QLS方法制备成混杂膜并构筑成化学修饰电极,通过紫外可见吸收(UV-vis),偏振紫外可见吸收(Polarized UV-vis),X射线粉末衍射(XRD)等测试对混杂膜的聚集性质进行了表征,(Pc)Eu(Pc)Eu[T(OH)PP]分子在纯膜与混杂膜中的聚集方式都是J聚集,且混杂前后,分子与基片间的夹角没有发生明显的变化。另外,杯芳烃组分与三层配合物组分几乎达到了分子程度的混合,这可以实现三层配合物良好电化学活性与杯芳烃很好超分子识别活性的结合,有利于基于超分子电化学识别的电化学传感器的构筑。也通过一系列电化学测试例如循环伏安法(CV)等确定了此基于电化学超分子识别的混杂膜的传感性质,发现杯芳烃的加入确实可以提高配合物对于一系列不同被检测物的分析能力,这来源于三层配合物好的电化学活性和杯芳烃通过超分子相互作用对被检测物的富集作用。这个工作拓宽了卟啉酞菁三层配合物在电化学传感器中的应用范围,并且对电化学传感器性能的提高提供了崭新的思路,为仿酶体系的设计提供了新的方向。
[Abstract]:Porphyrin-phthalocyanine metal complexes have unique electrical, optical and magnetic properties. As novel functional materials, they have potential applications in molecular fluorescence probes, molecular information storage and electrochemical sensors, and have broad application prospects in the field of materials science. In recent years, they have been widely used in the field of sensors. The research and development of new materials based on porphyrin phthalocyanine metal complexes have become a hot spot. This paper mainly includes the following parts: 1. Preparation of porphyrin phthalocyanine three-layer rare earth complexes and graphene oxide hybrid films and electrochemical sensing properties of H_2O_2 The molecular structure of the three-layer complex (Pc) Eu (Pc) Eu [trans-T (COOCH3) 2PP] was characterized by UV-vis, 1H NMR and MS. It was found that the complex solution had excellent bipolar semiconductor properties and could be used to prepare electrochemistry. Sensors. Hybrid multilayers of (Pc) Eu (Pc) Eu [trans-T (COOCH3) 2PP] and graphene oxide (GO) were prepared by a low-cost, simple and solvent-soluble QLS method. The hybrid multilayers were characterized by UV-vis, polarized UV-vis, X-ray powder diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM). The surface morphology and aggregation properties of the hybrid films were characterized by SEM, current-voltage curve (I-V) and other measurements. The results showed that the three-layer complex molecules had better crystallinity and dispersity due to the template effect of GO. The hybrid films had obviously improved surface morphology, uniform aggregation and small size (about 70 nm). A series of electrochemical sensing properties such as cyclic voltammetry (CV) and chronoamperometry (I-t) curves show that the response current has an excellent linear relationship with the concentration of H_2O_2, and the linear range is 0.05-1800 mu M, the response time is very short 0.03 s. This work is by far the best result of an enzyme-free hydrogen peroxide electrochemical sensor for tetrapyrrolyl compounds. More importantly, (Pc) Eu [trans-T (COOCH3) 2PP]/GO/ITO electrode has excellent stability, reproducibility and selectivity, showing electrochemical activity of the tetrapyrrolyl group. The combination of rare earth sandwich complexes with GO has great potential in the field of enzyme-free electrochemical sensors. 2. Preparation and electrochemical sensing properties of porphyrin phthalocyanine triple-layer rare earth complexes with calixarene hybrid membranes The molecular structure of the three-layer Eu (Pc) Eu (Pc) Eu [T (OH) PP] complex was characterized by UV-vis, 1H NMR and MS. The three-layer complexes were mixed with calix [4] aromatic hydrocarbons or calix [8] aromatic hydrocarbons with excellent supramolecular recognition properties in a low-cost, simple and convenient way. The hybrid films were prepared by solvent-treated QLS method and the chemically modified electrodes were fabricated. The aggregation properties of the hybrid films were characterized by UV-vis, Polarized UV-vis and XRD. The aggregation patterns of the (Pc) Eu [T (OH) PP] molecules in pure and hybrid films were investigated. It is J-aggregated, and the angle between the molecule and the substrate does not change significantly before and after mixing. In addition, the calixarene component and the three-layer complex component almost reach the molecular level of mixing, which can achieve the combination of the good electrochemical activity of the three-layer complex and the good supramolecular recognition activity of calixarene, which is conducive to the supramolecular electrochemistry based on the supramolecular electrochemistry. The sensing properties of the hybrid membranes based on electrochemical supramolecular recognition were also determined by a series of electrochemical tests such as cyclic voltammetry (CV). It was found that the addition of calixarene could improve the analytical ability of the complexes for a series of different detectable compounds, which originated from the three-layer complexes. This work broadens the application scope of porphyrin-phthalocyanine three-layer complexes in electrochemical sensors, and provides a new way to improve the performance of electrochemical sensors, and provides a new direction for the design of enzyme-mimetic systems.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O641.4;TP212

【参考文献】

相关期刊论文 前9条

1 王以轩;刘育;;磺化杯芳烃的超分子组装体构筑及其功能[J];化学学报;2015年10期

2 宋睿;易祯华;;光电传感器的应用和发展[J];科技创新与应用;2015年18期

3 于小雯;盛凯旋;陈骥;李春;石高全;;基于石墨烯修饰电极的电化学生物传感[J];化学学报;2014年03期

4 李文进;刘霞;李蓉卓;李蕾;;电化学传感器在农药残留检测中的研究进展[J];食品与机械;2013年04期

5 程振华;蔡婷婷;陈际海;周文博;刘咸尚;夏道宏;;酞菁金属化合物的合成与应用进展[J];石油化工;2012年09期

6 李秋莲;冯炎飞;聂进;徐绍芳;;对叔丁基杯芳烃合成及性能研究的综合实验[J];实验室研究与探索;2008年09期

7 夏琳;邱桂学;;化学科学的研究新领域——超分子化学[J];化学推进剂与高分子材料;2007年01期

8 钟志梅,姚俊学;杯芳烃及其衍生物的研究进展[J];内蒙古石油化工;2005年02期

9 王莉红,汤福隆;卟啉类试剂合成的进展[J];化学试剂;1999年05期



本文编号:2175480

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2175480.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户05473***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com