碳量子点的蓝光发射增强与机理研究
[Abstract]:Carbon quantum dots (CQDs) are crystalline or amorphous fluorescent carbon nanomaterials with sizes below 10 nm. They can be obtained by bottom-up (such as small molecule condensation) and top-down (such as graphene tailoring). Among them, CQDs with graphene lattice structure are also known as graphene quantum dots. The properties of carbon quantum dots, such as good fluorescence stability, low toxicity and good biocompatibility, have attracted much attention from researchers in the fields of physics, chemistry and biology. In this paper, the preparation methods of blue-light carbon quantum dots (QDs) with high quantum yields are studied from two aspects: enhancement of radiation transition process and inhibition of non-radiation transition process. The specific research contents and results are as follows: Nitrogen-doped carbon quantum dots were prepared by hydrothermal method using citric acid and ethylenediamine and their derivatives as raw materials. It was found that the quantum yield and optical band gap of carbon quantum dots were related to nitrogen content. The effects of concentration, solvent type, pH and ionic strength on the optical properties of CDs-DETA were investigated. The CDs-DETA was separated and purified by semi-preparative liquid chromatography, and the pyridinone small molecules (AEOIP) were confirmed by fluorescence spectroscopy and time luminescence spectroscopy. The experimental results show that AEOIP, CA and DETA molecules can form ionic liquids with good fluidity at room temperature by positive and negative charge attraction, and can form clusters with specific morphology at high concentration. Carbon quantum dot fluids are characterized by Newtonian fluids, and their viscosity decreases with increasing temperature. In addition, the selective fluorescence quenching of Fe3+ by CDs-DETA is used to investigate the application of CDs-DETA in the detection of Fe3+ and the size of 3-5 nm is obtained by acid oxidation cutting resin-based carbon fibers. Graphene quantum dots (GQDs) emitting blue fluorescence were prepared by using NaBH4 as reductant. The structures and morphologies of GQDs and rGQDs were characterized by transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The weak green emission of GQDs is the result of the irradiation transition of disordered oxygen-containing group defects introduced during acid oxidation. With the increase of reduction degree, the quantum yield of graphene quantum dots increases from 2.6% to 10.1%. At the same time, the characteristic peak position of blue fluorescence shifts rapidly and the half-width (FWHM) narrows. In addition, the blue fluorescence induced by graphophenol topological defect has longer lifetime, lower pH sensitivity and wavelength dependence. Graphene quantum dots were prepared by acid oxidation of graphite powder. Amino-modified graphene quantum dots (N-GQDs) were prepared by treating graphene quantum dots with ammonia at 100 C. Atomic force microscopy (AFM) showed that ammonia could further cut graphene oxide sheets to form graphene quantum dots or porous graphene oxide sheets. The fluorescence quantum yields of N-GQDs increased from 0.3% to 9.6% due to the increase of the carrier recombination rate and the decrease of the non-radiation recombination rate in N-GQDs. The time-resolved luminescence spectra showed that the quantum yields of N-GQDs increased from 0.3% to 9.6%. The localized electron excited state has longer fluorescence lifetime.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O657.3
【相似文献】
相关期刊论文 前10条
1 张静姝;田磊;;发光碳量子点的合成与毒性[J];应用化工;2013年08期
2 刘建忠,马季骅;纳米生物标记技术研究进展[J];化学与生物工程;2005年08期
3 双少敏;卞伟;;量子点的制备及其在光化学传感器中的应用研究进展[J];山西大学学报(自然科学版);2012年02期
4 李鸿程;周群芳;刘伟;闫兵;赵一兵;江桂斌;;量子点毒性效应的研究进展[J];中国科学(B辑:化学);2008年05期
5 陈汉琼;黄伟其;;硅量子点表面钝化的发光研究[J];贵州科学;2012年04期
6 谢月娥,颜晓红,陈元平;量子点超晶格中的电子输运[J];湘潭大学自然科学学报;2005年02期
7 邢仕歌;熊齐荣;钟强;张悦;卞素敏;金涌;储晓刚;;量子点抗体偶联技术研究进展[J];分析化学;2013年06期
8 张然;吕超;肖鑫泽;骆杨;徐颖;;量子点组装还原制备多种金属微纳结构的研究[J];高等学校化学学报;2014年03期
9 张海明;钟宏杰;;量子点的制备技术及进展[J];材料导报;2004年09期
10 徐天宁;李佳;李翔;隋成华;吴惠桢;;Ag/ZnO纳米结构的荧光增强效应[J];发光学报;2014年04期
相关会议论文 前10条
1 楚海建;王建祥;;非均质量子点结构弹性场分析的微扰理论[A];北京力学学会第12届学术年会论文摘要集[C];2006年
2 金鹏;李新坤;安琪;吕雪芹;梁德春;王佐才;吴剑;魏恒;刘宁;吴巨;王占国;;宽增益谱量子点材料与器件[A];第十六届全国晶体生长与材料学术会议论文集-02半导体材料器件及应用[C];2012年
3 琚鑫;郭健宏;;量子化表面等离子体极化激元与耦合量子点系统相互作用的格林函数理论[A];中国光学学会2011年学术大会摘要集[C];2011年
4 王宝瑞;徐仲英;孙宝权;姬扬;孙征;Z.M.Wang;G.J.Salamo;;InGaAs/GaAs量子点链状结构光学性质的研究[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
5 黄伟其;刘世荣;;用量子受限模型分析硅氧化层中的锗低维纳米结构(英文)[A];贵州省自然科学优秀学术论文集[C];2005年
6 马丽丽;邵军;吕翔;李天信;陆卫;;不同密度InAs/GaAs自组织量子点的光致发光比较研究[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
7 王宝瑞;孙征;孙宝权;徐仲英;;InGaAs/GaAs链状量子点结构的光学特性研究[A];第11届全国发光学学术会议论文摘要集[C];2007年
8 王鹏飞;熊永华;吴兵朋;倪海桥;黄社松;牛智川;;异变生长GaAs基长波长InAs垂直耦合量子点[A];第十五届全国化合物半导体材料,微波器件和光电器件学术会议论文集[C];2008年
9 李烨;涂洁;;砷化镓量子点太阳电池及材料的研究现状[A];战略性新兴产业的培育和发展——首届云南省科协学术年会论文集[C];2011年
10 刘鹏强;王茺;杨宇;;Si表面生长Ge量子点的研究进展[A];战略性新兴产业的培育和发展——首届云南省科协学术年会论文集[C];2011年
相关重要报纸文章 前1条
1 本报记者 董映璧;俄力推纳米研究成果走向应用[N];科技日报;2006年
相关博士学位论文 前10条
1 吴荣;用导电原子力显微镜研究锗硅量子点和量子环的形貌和电学特性[D];复旦大学;2007年
2 林健晖;锗硅量子点的自组织生长和微结构的研究[D];复旦大学;2009年
3 蔡其佳;锗硅量子点的制备及退火特性研究[D];复旦大学;2010年
4 邓宇翔;耦合量子点体系的电子输运研究[D];南京航空航天大学;2010年
5 周海峰;半导体量子点的研究:幻数尺寸、多模发射以及不同结构的量子点[D];山东大学;2015年
6 郭祥;InGaAs量子点可控生长研究[D];贵州大学;2015年
7 刘丹青;氧化锌纳米棒载量子点的制备和光-电性能研究[D];哈尔滨工业大学;2015年
8 宋骧骧;二维类石墨烯层状材料上量子点的研究[D];中国科学技术大学;2015年
9 侯菊英;基于碳量子点荧光技术快速测定果汁中的汞离子和有机磷农药残留[D];山东农业大学;2015年
10 王文泰;溶剂热法合成低维碳纳米材料及应用研究[D];中国石油大学(华东);2013年
相关硕士学位论文 前10条
1 肖,
本文编号:2178645
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2178645.html