基于优选波长的多光谱检测系统快速检测猪肉中挥发性盐基氮的含量
[Abstract]:Volatile base nitrogen (TVB-N) content is an important physical and chemical index to evaluate the freshness of pork. In order to realize fast and nondestructive detection of pork freshness, the characteristic wavelengths related to the content of TVB-N in pork were selected. The light-emitting diode (LED) light source containing characteristic wavelength was used in the multispectral detection system to determine the content of TVB-N in pork. Firstly, the hyperspectral reflectance data of pork were detected by using VIS-NIR hyperspectral system, and the first derivative (FD) method was used to obtain the hyperspectral reflectance data. The partial least squares regression (PLSR) model of TVB-N content in pork was established by standard normal variable transformation (SNV) and other pretreatment methods. Then the stepwise regression algorithm (SWA), continuous projection algorithm (SPA), gene genetic algorithm (GA) was used to screen the characteristic wavelengths related to the TVB-N content. The PLSR model and the multivariate linear regression (MLR) model were established by using the selected characteristic wavelengths. Finally, the LED light source with characteristic wavelength was applied to the multispectral detection system, and the PLSR model and MLR model were established to determine the content of TVB-N in pork. The experimental results show that the characteristic wavelengths selected by SWA-SPAGA can well reflect the information of the whole spectrum, the model is effective and the number of variables is greatly reduced. The LED light source with optimized characteristic wavelengths can be used to detect the TVB-N content in pork in a multispectral detection system. The results of MLR model are better than those of PLSR model. The correlation coefficient of correction set and the root mean square error of correction set are 0.9050, respectively. The correlation coefficient of prediction set and the root mean square error of prediction set are 0.9040 and 3.81 脳 10 ~ (-5), respectively.
【作者单位】: 中国农业大学工学院国家农产品加工技术装备研发分中心;
【基金】:国家重点研发计划(2016YFD0401205)
【分类号】:O657.33;TS251.51
【相似文献】
相关期刊论文 前10条
1 樊书祥;黄文倩;李江波;赵春江;张保华;;LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选[J];光谱学与光谱分析;2014年08期
2 孙红梅,彭慰先,孙桂娟;二氧化硫光谱检测技术[J];环境监测管理与技术;2004年03期
3 王冬媛,赵一兵,孙旭峰,郭祥群,许金钩;光谱检测新技术应用研究—Ⅰ.吸光标记染料的测定[J];福州大学学报(自然科学版);1999年S1期
4 王冬媛,赵一兵,孙旭峰,郭祥群,许金钩;光谱检测新技术应用研究-Ⅱ.吸光染料标记测定蛋白质[J];福州大学学报(自然科学版);1999年S1期
5 张宇峰;;关于土壤重金属光谱检测方法的探析[J];科技视界;2014年02期
6 曹晖;胡洛娜;周延;;融合波长选择和异常光谱检测的天然气燃烧过程定量分析方法[J];光谱学与光谱分析;2012年10期
7 施新花;;试析土壤重金属光谱检测技术的发展进程[J];中国新技术新产品;2013年11期
8 汪希伟;赵茂程;居荣华;;电可调滤光器光谱图像特征波长的提取方法[J];南京林业大学学报(自然科学版);2014年02期
9 李刚;熊婵;李家星;林凌;佟颖;张宝菊;;高光谱检测复杂混合溶液的Monte Carlo仿真研究[J];光谱学与光谱分析;2011年11期
10 张文磊;;试论土壤重金属光谱检测技术[J];资源节约与环保;2014年05期
相关会议论文 前1条
1 屠振华;冯霖;孙丽娟;康颖;籍保平;庆兆s,
本文编号:2198235
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2198235.html