铂镍催化剂的制备及其氢—水汽相催化交换性能研究
[Abstract]:Hydrogen-water vapor phase catalytic exchange (VPCE) is one of the important methods for detritium removal and heavy water production. In recent years, China's inland nuclear power plants have developed rapidly and are expected to build the first batch of inland nuclear power plants in China. The VPCE process is an important method for detritium removal in water. A series of catalysts with different loadings were prepared by liquid-phase impregnation-hydrogen reduction method with Ni as the main active metal and A1203 as the main carrier. The catalytic performance of hydrogen-water isotope vapor phase catalytic exchange reaction provides data support for optimizing operation parameters and predicting exchange performance of VPCE. The main conclusions are as follows: 1. Selecting cheap metal Ni as active metal, A1203 as the main carrier material of catalyst, and selecting liquid impregnation-hydrogen reduction process. Regular ceramic catalysts and granular catalysts with different loading ratios were prepared by the process. The results of SEM, XRD and other means showed that the catalyst component content was simple, only containing substrate materials and active metal elements. Active metal and substrate were closely bonded. 2. A complete balance experimental system was designed and built. The results show that the catalytic performance of Ni catalyst with high loading ratio is slightly higher than that of Pt catalyst with low loading ratio. The experimental temperature is about 200 C and the feed deuterium is about 200 C. When the deuterium concentration is 5%, the deuterium concentration in the outlet gas of Ni (10%) catalyst is 1.41%, which is higher than that of Pt (0.5%) catalyst when the deuterium concentration in the outlet gas is 1.32%. When the experimental temperature is 140 ~C, the result of Ni catalyst is 1.33% and that of Pt catalyst is 1.23%. The bigger the reaction separation factor is, that is, under the same experimental temperature and different pressure conditions, the experimental value of the reaction separation factor a = 0.42 (P = 303kPa) a = 0.40 (P = 193kPa) a = 0.28 (P = 108kPa) a = 0.26 (P = 101kPa); the higher the reaction temperature, the higher the deuterium concentration of the outlet gas at equilibrium. The influence of the feed ratio on the reaction results is that the deuterium concentration of the outlet gas is 4:1,3:1,2:1,1:1,1:2,1:1,1:2,1:1,1:2,1:3,1:4 in the final equilibrium, which can be selected according to the process cost and the concentration of the exhaust gas. From the repeatability experiment of the system, it can be seen that the repeatability of different catalysts at different temperatures is good, the system is reliable and stable. 3. A set of counter-current VPCE process equipment is designed and built. A series of catalyst performance studies and VPCE process parameters calculation are carried out by using a variety of catalysts. The lower the hydrogen flow rate, the higher the outlet deuterium concentration, the 5% deuterium concentration in the feed deuterium water, the 0.2L/min:64ml/h, 1L/min:64ml/h and 2L/min:64ml/h, the final equilibrium is 1.63%, 1.3% and 1% respectively; the higher the temperature, the higher the deuterium concentration in the outlet deuterium water, the more conducive to the reorganization. The first two results are about 1.08% when the hydrogen and deuterium feed is 1L/min: 32ml/1h, 2L/min: 64ml/h, 3L/min: 96ml/h and 4L/min: 128ml/h. The latter two results can not be increased because of the large flow rate and the temperature can not be increased. At this time, when the set temperature of the system is raised from 0.92% to 0.98%. The results show that when the experimental conditions are the same, the specific hydrogen ratio of the feed to deuterium water is 2L/in:64ml/h, the results are all about 1%. Therefore, in the industrial application, the process described in this paper is adopted. The prepared catalyst has excellent catalytic effect. 4. In practical process application, the catalytic efficiency of granular catalyst per unit volume in unit time is much higher than that of regular ceramic catalyst. It has obvious advantages in practical application. The results show that the Kya value increases with the increase of the hydrogen feed rate, and the linearity is good, R2 is above 0.993. The Kya value of the Ni-loaded (11.5%) granular catalyst is 0.818 m 3.s-1.m-3, which is much higher than that of the Ni-loaded (6%) regular ceramics when the hydrogen feed rate is 2 L/min: 64 ml/h. The feasibility of Ni-based catalyst in hydrogen-water isotope catalytic exchange process was demonstrated through the research work of this paper. The effects of temperature, pressure and feed ratio on the reaction were studied. The calculation of basic parameters related to VPCE process was completed, which provided data support for practical application.
【学位授予单位】:中国工程物理研究院
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 钱慧娟;钙催化剂负载步骤对蒸汽气化过程改性李壳活性炭多孔结构的影响[J];林产化工通讯;1999年06期
2 魏昭彬,赵秀阁,辛勤;双组分过渡金属氮化物催化剂Ⅱ.催化性能[J];催化学报;2000年04期
3 张阿方;聚合物支载的有机催化剂 Ⅱ.手性有机催化剂[J];高分子通报;2005年06期
4 陈鹏;彭峰;;纳米金催化剂的研究进展[J];工业催化;2009年04期
5 陆耘,陈移山,符若文,曾汉民;以活性碳纤维为载体的催化剂对NO的催化还原作用──二.镍系催化剂[J];离子交换与吸附;1994年01期
6 李桂花,王洪义,李铭岫;甲基丙烯醛氧化酯化制甲基丙烯酸甲酯催化剂的制备与应用[J];应用化学;2005年07期
7 陆耘,陈移山,,符若文,曾汉民;以活性碳纤维为载体的催化剂对NO的催化还原作用──一.铜系催化剂[J];离子交换与吸附;1994年01期
8 王莹;侯党社;韩丽萍;马红竹;;钒改性催化剂的制备及表征[J];价值工程;2012年33期
9 松本英之;沈松源;;水蒸汽转化催化剂的劣化和寿命预测[J];北京化工学院学报;1980年02期
10 塔娜;沈岳年;王成;张雁冰;齐和日玛;;负载型纳米金催化剂对室内空气中甲醛的去除[J];环境科学学报;2009年06期
相关会议论文 前10条
1 雷金化;李栋梁;周光远;;多孔聚合物微球在烯烃催化剂负载中的应用[A];中国化学会第十二届全国应用化学年会论文集[C];2011年
2 王京刚;王悦;康静娜;尹世磊;;BaZrO_3催化剂的制备及负载后催化氧化NO的研究[A];2013中国环境科学学会学术年会论文集(第五卷)[C];2013年
3 赵育榕;车春霞;谭都平;;LY-C_2-02催化剂催化性能综合分析[A];第十一届全国青年催化学术会议论文集(上)[C];2007年
4 赵育榕;谭都平;景喜林;车春霞;;LY-C_2-02催化剂催化性能综合分析[A];甘肃省化学会第二十五届年会、第七届甘肃省中学化学教学经验交流会论文集[C];2007年
5 张思华;王亚明;缪应菊;史晓杰;;非贵金属铜系催化剂上氧化CO的研究进展[A];第五届全国工业催化技术与应用年会论文集(下册)[C];2008年
6 唐博;吕仁庆;项寿鹤;;纳米Pd/Al_2O_3催化剂的表征及其应用[A];中国化工学会2003年石油化工学术年会论文集[C];2003年
7 罗鸽;闫世润;乔明华;范康年;;载体对RuSnB催化剂乳酸乙酯加氢制1,2-丙二醇性能的影响[A];中国化工学会2005年石油化工学术年会论文集[C];2005年
8 吕高明;陈献;汤吉海;崔咪芬;乔旭;;氯化氢氧化Ce-Cu-K/Y催化剂负载量对活性的影响及表征分析[A];第六届全国工业催化技术及应用年会论文集[C];2009年
9 黄传敬;金燕仙;伊晓东;翁维正;万惠霖;;VTeO/SiO_2催化剂的激光拉曼和紫外-可见漫反射光谱研究[A];全国第13届分子光谱学术报告会论文集[C];2004年
10 李玉龙;王刚;王斯晗;陈谦;张德顺;张宝军;;α-双亚胺Ni(Ⅱ)催化剂的聚合反应研究[A];2007年全国高分子学术论文报告会论文摘要集(上册)[C];2007年
相关博士学位论文 前10条
1 张成丽;新型多孔碳基复合材料的制备及其在能源环境中的应用[D];复旦大学;2013年
2 刘娟;基于碳基纳米材料的催化剂的设计[D];苏州大学;2015年
3 黄征;有机体系锂空气电池纳米氧还原电催化材料的研究[D];华中科技大学;2015年
4 张明宇;CO_2加氢合成甲醇Cu-Zn-Zr-O催化剂研究[D];昆明理工大学;2015年
5 田新龙;基于过渡金属氮化物氧还原催化剂的制备及其氧还原性能研究[D];华南理工大学;2016年
6 宁小媚;氮掺杂纳米碳负载Pt催化剂的结构调控与催化氧化性能研究[D];华南理工大学;2016年
7 田斐;可见光分解水制氢催化剂ZnIn_2S_4的改性及其Z型体系构建研究[D];哈尔滨工业大学;2016年
8 代胜瑜;链行走催化剂在烯烃聚合和共聚中的应用[D];中国科学技术大学;2016年
9 刘昭;配体修饰对Ru-bda型催化剂催化水氧化机理影响的研究[D];大连理工大学;2015年
10 闫新华;镍的二亚胺催化剂催化乙烯和α-烯烃的聚合研究[D];北京化工大学;2011年
相关硕士学位论文 前10条
1 简思平;MIL-101负载纳米金属催化剂的合成及其催化加氢应用[D];华南理工大学;2015年
2 刘广环;铁系复合氧化物的制备及其在DMC合成中的应用[D];河北联合大学;2014年
3 谭方关;超临界甲醇中磁性催化剂液化木质素试验研究[D];昆明理工大学;2015年
4 史冉冉;碱性直接甲醇燃料电池阳极催化剂电化学制备及性能研究[D];郑州大学;2015年
5 肖春莹;Cr/Na-ZSM-5催化剂的制备及其性能的研究[D];大连交通大学;2015年
6 王欢;CH_4在Ni/MgAl_2O_4催化剂表面吸附及反应的理论研究[D];山东大学;2015年
7 华杰锋;吸附相反应技术制备CuO-MgO/SiO_2催化剂及其低温液相合成气制甲醇催化性能[D];浙江大学;2015年
8 侯晓雪;MgO和CeO_2对Ni/olivine催化剂蒸气转化甲苯的催化性能的影响研究[D];郑州大学;2015年
9 翟庆辉;杂多酸(盐)催化剂催化苯直接羟基化[D];聊城大学;2015年
10 苏行;固体酸催化剂上NH_3选择性催化还原NO_x的研究[D];北京化工大学;2015年
本文编号:2226186
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2226186.html