当前位置:主页 > 科技论文 > 化学论文 >

负载型Pt基纳米复合催化剂的制备及其对4-硝基苯酚加氢的研究

发布时间:2018-09-09 08:13
【摘要】:芳胺类物质广泛应用于精细化工、燃料、医药等很多领域。通过硝芳基化合物催化加氢还原制备芳胺类物质的过程,由于具有环境友好、易操作等优点,已经成为目前生产芳胺类物质最常用的方法。而在催化加氢过程中,高效的催化剂对于生产芳胺类化合物的生产成本和产品质量具有重要影响。在本文中,主要制备了两种负载型Pt基纳米催化剂,用于4-硝基苯酚(4-NP)催化还原制备4-氨基苯酚(4-AP)的过程,研究纳米催化剂在加氢反应中的催化性能。主要包括:1、铂修饰负载型镍(NiPt)纳米催化剂的制备首先,以葡萄糖碳化后的产物为还原剂,水滑石为载体制备得到了负载型铂纳米催化剂。其次再高温煅烧得到铂修饰负载型镍纳米催化剂。具体内容为:采用类似成核/晶化隔离法制备得到镍铝水滑石(NiAl-LDH)前躯体,将NiAl-LDH前躯体与葡萄糖溶液混合,在晶化过程中,加入氯铂酸,使晶化过程与还原过程同时进行,从而制得高度分散的负载型铂纳米催化剂(Pt@LDH/C)。将Pt@LDH/C高温煅烧得到铂修饰负载型镍纳米催化剂(NiPt)。通过调变焙烧温度考察了制备条件对纳米催化剂形貌结构的影响,最终确定出最优的制备条件。2、纳米催化剂的形貌和Pt的负载量对催化性能的影响在最佳的制备条件下,改变铂的负载量,制备出一系列铂负载量不同的NiPt纳米催化剂,并对纳米催化剂的结构形貌等进行了一系列的表征,考察了纳米催化剂的催化性能。结果表明:当铂的理论负载量为0.6%时,纳米催化剂的活性最高。3、以生物质为原料熔盐法制备生物多孔炭(PC)催化剂载体在本研究中,生物质通过一个简单的熔盐合成过程转化为多孔炭。通过这种方法碳化和活化过程能够一步完成,并且由于熔盐氯化锌提供了一个较好的熔融环境,所以,碳化时间和温度显著的降低了。多孔炭的性质通过XRD、TG-DSC、SEM、TEM、FT-IR和BET吸脱附等温线表征。结果表明制备的多孔炭是无定形的,具有分级孔结构并且比表面积高达1642 m2g-1,表面富含多种官能团。这些官能团能够提供较多的吸附位点。4、二氧化锡与多孔炭复合物的制备及其对Pt纳米催化剂的负载与催化性能研究首先,用溶剂热法制备二氧化锡-多孔炭(SnO_2-PC)复合物。然后,再以乙二醇(EG)为还原剂,SnO_2-PC复合物为载体,制备得到了负载型铂纳米催化剂(Pt@SnO_2-PC)。具体内容为:以氯化亚锡为锡源,碱性乙醇为还原剂和溶剂,在溶剂热的条件下与多孔炭混合,制备出SnO_2-PC复合物。然后,再以此复合物为载体,以EG为还原剂,在乙二醇/水体系中,通过溶剂热法制备Pt@SnO_2-PC。并对纳米催化剂的结构形貌等进行了一系列的表征,考察了纳米催化剂的催化性能。确定出氧化物对纳米催化剂活性的影响。结果表明:SnO_2-PC对实验无催化作用;在相同Pt负载量的情况下,与Pt@PC相比,Pt@SnO_2-PC具有较高的活性。说明SnO_2对催化具有促进作用。
[Abstract]:Aromatic amines are widely used in many fields, such as fine chemical industry, fuel, medicine and so on. The process of preparing aromatic amines by catalytic hydrogenation reduction of nitroaryl compounds has become the most commonly used method for the production of aromatic amines because of its environmental friendliness and ease of operation. In the process of catalytic hydrogenation, the efficient catalyst has an important effect on the production cost and product quality of aromatic amines. In this paper, two kinds of supported Pt based nanocatalysts were prepared for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The main results are as follows: (1) Platinum modified supported nickel (NiPt) nanocatalysts were prepared. Firstly, supported platinum nanocatalysts were prepared by using glucose carbonized products as reducing agent and hydrotalcite as support. Secondly, platinum modified supported nickel nanocatalysts were obtained by calcining at high temperature. The main contents are as follows: the nickel aluminum hydrotalcite (NiAl-LDH) precursor was prepared by similar nucleation / crystallization isolation method. The NiAl-LDH precursor was mixed with glucose solution. In the process of crystallization, chloroplatinic acid was added, so that the crystallization process and the reduction process were carried out simultaneously. A highly dispersed supported platinum nanocatalyst (Pt@LDH/C) was prepared. Preparation of Platinum modified Nickel Nano-catalyst (NiPt). By calcining Pt@LDH/C at High temperature The effects of preparation conditions on the morphology and structure of nano-catalysts were investigated by changing the calcination temperature, and the optimum preparation conditions were determined. The effects of the morphology of nano-catalysts and the amount of Pt loading on the catalytic performance were obtained under the optimum preparation conditions. A series of NiPt nanocatalysts with different platinum loading were prepared by changing the loading amount of platinum. The structure and morphology of the nanocrystalline catalysts were characterized and the catalytic properties of the nanocrystalline catalysts were investigated. The results showed that when the theoretical loading amount of platinum was 0.6, the activity of nanometer catalyst was the highest. The bioporous carbon (PC) catalyst carrier was prepared by using biomass as raw material and molten salt as raw material in this study. Biomass is converted into porous carbon through a simple molten salt synthesis process. The carbonation and activation process can be completed in one step by this method, and the carbonation time and temperature are significantly reduced because the molten salt zinc chloride provides a better melting environment. The properties of porous carbon were characterized by XRD,TG-DSC,SEM,TEM,FT-IR and BET adsorption isotherms. The results show that the prepared porous carbon is amorphous, with a graded pore structure and a specific surface area of 1642 m2g-1.The surface is rich in various functional groups. These functional groups can provide more adsorption sites. 4. Preparation of Sno _ 2 / porous carbon complexes and their support and catalytic performance on Pt nanocatalysts. Firstly, solvothermal synthesis of tin dioxide / porous carbon (SnO_2-PC) complexes is studied. Then the supported platinum nanocatalyst (Pt@SnO_2-PC) was prepared by using ethylene glycol (EG) as the reductant Sno _ 2-PC complex as the carrier. The main contents are as follows: using stannous chloride as tin source, alkaline ethanol as reducing agent and solvent, the SnO_2-PC complex was prepared by mixing with porous carbon under solvothermal conditions. Then, using this complex as carrier and EG as reducing agent, Pt@SnO_2-PC. was prepared by solvothermal method in ethylene glycol / water system. The structure and morphology of the nanocatalysts were characterized and the catalytic properties of the nanocrystalline catalysts were investigated. The effect of oxide on the activity of nanometer catalyst was determined. The results show that: SnO2-PC has no catalytic effect on the experiment, and PtSn-SnO2-PC has higher activity than Pt@PC under the same Pt loading. The results show that SnO_2 can promote the catalysis.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O643.36;TQ243.1

【相似文献】

相关期刊论文 前10条

1 韩忠霄;殷蓉;李景印;王德松;;聚苯胺改性负载型纳米二氧化钛的研究[J];无机盐工业;2007年12期

2 杨洪丽;李为民;姚建;;钙基负载型固体碱催化酯交换反应活性评价[J];燃料化学学报;2008年02期

3 韩俊杰;;负载型金属氧化物催化剂的分子设计[J];化学工程师;1993年02期

4 董文庚,郎志敏,陈学诚;一种负载型重金属离子富集剂的制备及初步应用[J];河北轻化工学院学报;1997年04期

5 林凯;辛嘉英;陈丹丹;张兰轩;王艳;夏春谷;;负载型纳米金催化葡萄糖氧化研究进展[J];分子催化;2014年01期

6 李峰,许可,李蕾,王作新,段雪;硅胶负载型硫酸锆表面相结构的理论研究[J];化学学报;2000年02期

7 黄宝琛;贺继东;徐玲;周健松;蔡明;唐学明;;负载型钛系催化剂合成高反1,4—聚异戊二烯的研究[J];青岛化工学院学报;1990年04期

8 贺继东,王娟;负载型钛催化剂催化异戊二烯溶液聚合动力学[J];青岛大学学报(工程技术版);2000年03期

9 李小红;郑旭煦;侯苛山;;负载型二氧化钛光催化剂的研究进展[J];重庆工商大学学报(自然科学版);2009年02期

10 吴沛成,忻新泉,戴安邦,张毓昌;负载型草酸铁(Ⅲ)的光分解研究[J];科学通报;1984年11期

相关会议论文 前10条

1 梁长海;;金属有机化学气相沉积选控制备负载型催化新材料[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年

2 辛秀兰;洪珊;徐宝财;祝钧;;负载型纳米磷钼杂多酸盐制备研究[A];第十三届全国催化学术会议论文集[C];2006年

3 康卫民;付文丽;李全祥;程博闻;;纤维负载型催化材料研究进展[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

4 董林;陈懿;;负载型金属氧化物催化剂表面相互作用研究[A];第十三届全国催化学术会议论文集[C];2006年

5 郭瑜;贾春江;司锐;;负载型胶体金颗粒催化材料用于低温催化一氧化碳氧化[A];中国化学会第29届学术年会摘要集——第06分会:稀土材料化学及应用[C];2014年

6 底兰波;徐志坚;亓滨;王凯;张丽娟;张秀玲;;大气压介质阻挡放电还原负载型金属离子的机理研究[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年

7 李洪芳;罗孟飞;鲁继青;;负载型金催化剂上甲醛低温氧化[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年

8 安立敦;齐世学;邹旭华;索掌怀;;催化性能稳定的负载型纳米金催化剂[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

9 罗文豪;王小慧;张明慧;李伟;陶克毅;;负载型钼的碳氮夹杂化合物制备及其加氢脱硫性能研究[A];中国化学会第26届学术年会应用化学分会场论文集[C];2008年

10 田然;王甫村;孙发民;朱金玲;吕倩;;负载型加氢催化剂金属组分在载体上的分布状态[A];第五届全国工业催化技术与应用年会论文集(上册)[C];2008年

相关博士学位论文 前8条

1 熊君;硅基负载型离子液体催化氧化燃油脱硫的研究[D];江苏大学;2015年

2 陈加利;高分散负载型钯基金属催化剂的制备、表征及其催化加氢性能研究[D];北京化工大学;2014年

3 郑维时;基于酚醛树脂微球为模板的负载型贵金属催化剂的制备及性质研究[D];吉林大学;2015年

4 吴海强;负载型点击聚合催化剂的探索[D];浙江大学;2016年

5 周硼;硫酸衍生固体酸—负载型硫酸及其盐和磺酸树脂催化性能的研究[D];大连理工大学;2003年

6 王佳;层状前驱体制备高分散负载型纳米镍基催化剂及其性能的研究[D];北京化工大学;2012年

7 辛俊娜;高分散负载型纳米Pd基加氢催化剂的研究[D];大连理工大学;2008年

8 李凝;负载型纳米ZrO_2/Al_2O_3复合载体及Ni基催化剂的研究[D];南昌大学;2006年

相关硕士学位论文 前10条

1 李志雄;负载型铜基催化剂CO_2加氢合成甲醇性能研究[D];昆明理工大学;2015年

2 尚会姗;负载型Pt基纳米复合催化剂的制备及其对4-硝基苯酚加氢的研究[D];郑州大学;2016年

3 罗启文;固相法制备负载型酚类防老剂及其在丁苯橡胶中的应用研究[D];华南理工大学;2016年

4 赵琛;磁性负载型超强酸催化的锡林浩特褐煤的加氢裂解[D];中国矿业大学;2016年

5 张栋栋;负载型铁催化的兴和褐煤的加氢转化[D];中国矿业大学;2016年

6 屈萌;负载型固体超强酸催化的蒙东褐煤的加氢转化[D];中国矿业大学;2016年

7 付亚;α-蒎烯加氢负载型镍催化剂的研究[D];东南大学;2005年

8 李辛玉;负载型金催化剂对丙酮及苯系物的低温催化消除[D];湖南科技大学;2007年

9 郭敏;负载型铬基介孔催化剂的制备及其应用[D];太原理工大学;2013年

10 邵芳;负载型酞菁的合成及催化氧化性能研究[D];济南大学;2011年



本文编号:2231809

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2231809.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户277b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com