Ni基催化剂上丙酮加氢制备异丙醇的工艺研究
[Abstract]:Isopropanol is a kind of chemical product with great industrial application value, which is widely used in ink, paint, medicine and electronic industry. Acetone hydrogenation is a method of preparing isopropanol with low energy consumption, simple process and light corrosion to equipment. Its core technology is to develop a kind of method. In this paper, Ni/ZSM-5 catalysts with good hydrogenation activity and low cost were prepared by immersing Ni on ZSM-5 carrier with equal volume method, and Cu, Zn, Fe, Co, Mg, Mn, Ca and K were added as active promoters to modify Ni/ZSM-5 catalysts. The effects of preparation conditions and different reaction conditions on the performance of Ni-based catalyst for acetone hydrogenation to isopropanol were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), N2 adsorption/desorption and NH3-TPD. Firstly, a series of Ni/ZSM-5 catalysts were prepared by isovolumetric impregnation method, and the effects of preparation conditions and reaction conditions on the performance of the catalysts for acetone hydrogenation were investigated. The optimum reaction conditions are as follows: hydrogen reduction temperature 450, reduction time 4 h, reaction temperature 130, reaction pressure 3.5 MPa, molar ratio of hydrogen to ketone 5:1, and the stability of the catalyst is good. A series of Ni-M/ZSM-5 (M=Zn, Fe, Cu, Mg, Co, Mn, Ca, K) catalysts were used to investigate the effects of different active promoters on the catalytic performance. Compared with Ni/ZSM-5 catalyst, XRD showed that the addition of Ca increased the dispersion of Ni in the surface layer of ZSM-5 support and greatly reduced the size of Ni particles; XPS showed that the existence of Ni was NiO, the existence of Ca was CaO, and the addition of Ca was CaO. The electron cloud density of nickel in the catalyst increases, the interaction force between nickel and hydrogen atoms decreases, the desorption of hydrogen on the catalyst becomes easier, which is conducive to the hydrogenation reaction, and inhibits the interaction between nickel and the support, i.e. the formation of NiAl2O4 species, which is favorable to the reduction of Ni2 +. NH3-TPD showed that the addition of Ca reduced the acidity of the catalyst, thus modifying the pore structure of ZSM-5 support, improving the dispersion of active component Ni on the support, adjusting the chemical environment of Ni/ZSM-5 catalyst and enhancing the catalyst return. Finally, a series of Ni-Ca/ZSM-5 catalysts were prepared by isovolumetric impregnation method at different calcination temperatures. The effects of calcination temperature on the performance, morphology, dispersion and pore structure of Ni-Ca/ZSM-5 catalysts for acetone hydrogenation were investigated. The results showed that the optimum calcination temperature was 450 C. SEM showed that the calcination temperature was 450 C. The surface of the catalyst is rough and disordered, the particle distribution is more dispersed, the grain irregularity is larger, the active component distribution is uniform, and the catalytic performance is high; the catalyst particles prepared under the condition of 700 C calcination have smooth surface, regular structure and dense particle arrangement, which is not conducive to the uniform distribution of the active component, thus leading to the performance of the catalyst. N2 adsorption/desorption results show that the specific surface area of Ni-Ca/ZSM-5 catalyst calcined at 450 C is larger than that of blank ZSM-5 carrier, and the specific surface area of the catalyst decreases with the increase of calcination temperature. Excessive calcination temperature will lead to the collapse of pore structure, the average pore size and the specific surface area of the catalyst decrease. The results show that the crystalline structure of NiO in the catalyst calcined at 700 C becomes more regular, the crystallization degree becomes larger and the crystallization tends to be perfect.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O643.36;TQ223.123
【相似文献】
相关期刊论文 前10条
1 陈明浩;18Ni马氏体时效钢电化学相分析[J];冶金分析;1990年02期
2 程占保;朱维东;苏向东;王义厢;江林涛;王彤;;TiO_2/NiTi合金中Ni的扩散模型研究[J];热处理技术与装备;2008年06期
3 田高峰;汪煜;杨杰;邹金文;汪武祥;;Ni基粉末冶金高温合金平衡析出相的热力学研究[J];粉末冶金技术;2012年04期
4 张继儒;;用Ni~(2+)作催化剂光度法测定白酒中的锰[J];南充师院学报(自然科学版);1988年01期
5 张保红,李国彬,吴玉会,吴晔峰;富镧稀土-Ni对铜合金性能影响的研究[J];河北冶金;2004年05期
6 王洪福;张素兰;苏智先;何黎明;廖家娥;;2,3,7-三羟基-9-水杨基荧光酮催化动力学光度法测定痕量Ni(Ⅱ)[J];分析试验室;2011年05期
7 雷鸣,郭蕴宜;9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现[J];金属学报;1989年01期
8 岳长荣,左育民,罗彤,玄光善;新型Ni碳化树脂催化剂的制备及微量测定有机氧研究[J];高等学校化学学报;1992年08期
9 蒋毅民,张淑华,周忠远,钟新仙;Ni(Ⅱ)牛磺酸缩水杨醛席夫碱·2,2'-联吡啶三元配合物的合成及晶体结构[J];结构化学;2003年01期
10 田树勋,李振花,王海涛,何菲;空气低温等离子体对Ni基催化剂的改性作用[J];化学反应工程与工艺;2004年02期
相关会议论文 前10条
1 张淑华;钟凡;钟新仙;蒋毅民;;Ni(Ⅱ)、牛磺酸缩水杨醛席夫碱、邻菲咯啉、水四元配合物的合成及晶体结构[A];中国化学会第八届多元络合物会议论文[C];2002年
2 谭小丽;陈长伦;胡君;王祥科;;碳纳米管对Ni~(2+)和表面活性剂的吸附研究[A];中国化学会第26届学术年会现代核化学与放射化学分会场论文集[C];2008年
3 王敬丰;刘欣;丁培道;汤爱涛;潘复生;;Ni对Mg-Ni合金的非晶形成及储氢性能的影响[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
4 沈小军;刘玉;冯青平;肖红梅;付绍云;;透明柔性导电导磁Ni/环氧树脂复合膜的制备及性能[A];北京粘接学会第二十届学术年会暨胶粘剂、密封剂技术发展研讨会论文集[C];2011年
5 谢福中;卜娟;闫世润;乔明华;宗保宁;张晓昕;;猝冷骨架Ni催化剂在乙二醇液相催化重整制氢反应中的性能研究[A];中国化工学会2005年石油化工学术年会论文集[C];2005年
6 闫卫平;席文柱;邝永变;杜立群;;Ni薄膜热敏电阻的研究[A];第二届全国信息获取与处理学术会议论文集[C];2004年
7 李文木;张所波;;过渡金属Ni催化制备可溶解的高性能异构聚酰亚胺[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
8 乔学亮;许卫华;张振中;孙培祯;;Ni—P薄膜中磷的不均匀性研究[A];首届中国功能材料及其应用学术会议论文集[C];1992年
9 潘渤;张旭;尚福林;;单晶塑性理论对Ni微柱体的适用性研究[A];塑性力学新进展——2011年全国塑性力学会议论文集[C];2011年
10 徐人威;刘东兵;王世波;毛炳权;;球形氯化镁负载Ni系催化剂乙烯聚合研究[A];中国化工学会2005年石油化工学术年会论文集[C];2005年
相关重要报纸文章 前3条
1 北京曲协副主席 崔琦;相声能不能不说“shǐ”、“niào”、“pì”[N];中国艺术报;2013年
2 肖英龙;奥氏体系不锈钢省Ni化进展及课题[N];世界金属导报;2007年
3 ;NI推出4种用于PXI平台的新型R系列VO模块[N];电子报;2008年
相关博士学位论文 前10条
1 张轲;低Ni载量六铝酸盐催化剂上甲烷和二氧化碳重整制合成气反应研究[D];吉林大学;2009年
2 胡将将;纳米晶Cu,Ni及Ni-Fe合金力学行为及其变形机制的研究[D];吉林大学;2015年
3 江鹏;透氢V_(55)Ti_(30)Ni_(15)合金的制备工艺及组织性能研究[D];哈尔滨理工大学;2014年
4 吉可明;燃烧法制备Ni基催化剂及其浆态床甲烷化性能的研究[D];太原理工大学;2015年
5 吴靓;Ni基多孔合金的制备及性能研究[D];中南大学;2013年
6 王路辉;Ni CeO_2催化剂上水煤气变换和逆水煤气变换反应的研究[D];天津大学;2008年
7 张杰;Cu,Ni/ γ-Al_2O_3催化加氢动力学与应用研究[D];浙江大学;2002年
8 廖亚龙;Pd、Ni催化紫胶改性新工艺及机理研究[D];昆明理工大学;2007年
9 穆君伟;块体纳米晶Cu,Ni及Ni-Fe合金的力学性能研究[D];吉林大学;2013年
10 郭梅;铌酸盐M~(2+)Nb_2O_6(M~(2+)=Zn,Ni)基微波介质陶瓷低温烧结和微波介电性能研究[D];华中科技大学;2012年
相关硕士学位论文 前10条
1 陈鑫;改性硅藻土吸附废水中Ni~(2+)的实验研究[D];昆明理工大学;2015年
2 赵颖;纳米NiO熔盐电解制备Ni的研究[D];河北联合大学;2014年
3 阮博;Ni掺杂和交换对水钠锰矿向钙锰矿转化的影响[D];华中农业大学;2015年
4 罗军;Ni系顺丁橡胶装置节能技术的研究[D];北京化工大学;2015年
5 谭鹏甲;Ni(Mo)/(Ce_(0.8)Zr_(0.2)O_2)MgAl(O)金属氧化物催化剂催化CH_4-CO_2重整制合成气研究[D];太原理工大学;2014年
6 周文鑫;麦饭石矿物的改性制备及对水中Ni~(2+)、Cu~(2+)吸附性能的研究[D];成都理工大学;2015年
7 张金玲;Ni,Ce离子交换的SBA-15介孔材料吸附剂上柴油的深度吸附脱硫[D];哈尔滨师范大学;2015年
8 杨博;Ni基催化剂上CO加氢过程的原位红外研究[D];天津大学;2014年
9 王雪;MgO负载Ni催化剂催化水蒸气重整生物醇制氢[D];哈尔滨师范大学;2015年
10 张彬;Ni(C)基纳米胶囊的制备及光催化性能研究[D];沈阳工业大学;2016年
,本文编号:2243276
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2243276.html