当前位置:主页 > 科技论文 > 化学论文 >

修饰玻碳电极的制备及其在环境污染物检测中的应用

发布时间:2018-09-18 11:14
【摘要】:利用化学修饰电极进行检测的电化学方法有着快速响应、仪器廉价、体积小、电极制备过程简单、灵敏度高、重现性好以及成本低等优点,一直是电化学领域的研究热点。本文报告了以多壁碳纳米管、纳米金溶液和孔雀石绿等为原料,分别采用滴涂法和电化学聚合的方法制备了三种化学修饰电极:羧基化多壁碳纳米管/壳聚糖修饰玻碳电极(c-MWCNTs/CS GCE)、羧基化多壁碳纳米管-纳米金/壳聚糖修饰玻碳电极(c-MWCNTs-Au/CS GCE)和聚孔雀石绿修饰玻碳电极(PMG/GCE),并研究了水环境污染物2,4-二氯酚、亚硝酸盐和正磷酸盐的检测方法其在电极上的电化学行为。内容如下:(1)c-MWCNTs/CS GCE检测水体中的2,4-二氯酚:通过滴涂法制备c-MWCNTs/CS GCE,采用循环伏安法和差分脉冲伏安法研究了2,4-二氯酚在该修饰电极上的电化学行为。实验结果表明:与裸玻碳电极相比,c-MWCNTs/CS GCE明显提高了2,4-二氯酚的氧化峰电流,且2,4-二氯酚在修饰电极上发生的电化学反应是一个两电子和两质子参与受扩散控制的完全不可逆反应。2,4-二氯酚在该检测条件下的扩散系数D为1.5857×10~(-5) cm~2·s~(-1)。采用循环法安法对2,4-二氯酚检测:线性检测范围为0.2-1.0 mg/L、1.0-10 mg/L和10-80 mg/L,拟合R~20.99,检测限为0.1mg/L。采用差分脉冲伏安法检测2,4-二氯酚:线性检测范围0.1-1mg/L、1-10 mg/L和10-80 mg/L,R~20.99,检测限为0.01 mg/L。(2)c-MWCNTs-Au/CS GCE检测水体中的亚硝酸盐:采用滴涂法制备c-MWCNTs-Au/CS GCE,并用循环伏安法和差分脉冲伏安法研究亚硝酸盐在修饰的电极上的电化学行为。实验结果表明:c-MWCNTs-Au/CS GCE对亚硝酸盐具有显著的电催化作用。亚硝酸根在修饰电极上发生的电化学反应是一个有两个电子参与而无质子参与的完全不可逆氧化反应,且该反应过程受扩散控制。在检测条件下,亚硝酸钠的扩散系数为2.6403×10~(-6) cm~2·s~(-1)。采用循环伏安法检测亚硝酸盐:线性检测范围为0.8-10 mg/L和10~(-5)00 mg/L,R~20.99,检测限为0.1 mg/L。差分脉冲伏安法检测亚硝酸盐:线性检测范围为0.05-1 mg/L和1-150 mg/L,R~20.99,检测限为0.01 mg/L。(3)磷酸盐在PMG/GCE上的电化学行为研究:采用循环伏安法电化学聚合孔雀石绿制备PMG/GCE,并用循环伏安法和差分脉冲伏安法研究磷钼酸在修饰电极上的电化学行为。实验结果表明:PMG/GCE对磷钼酸的电催化作用显著强于GCE,磷钼酸在修饰电极上发生的电化学反应是多个准可逆反应组成,每一个可逆反应均有两电子和两质子参与,反应受扩散控制,磷钼酸在检测条件下的扩散系数D为7.258502×10~(-6) cm~2·s~(-1)。循环伏安检测:线性检测范围:0.1-1 mg/L和1-12 mg/L,R~20.99,检测限为0.04 mg/L。差分脉冲伏安检测:线性检测范围0.08-1 mg/L和1-12 mg/L,R~20.99,检测限为0.01 mg/L。
[Abstract]:The electrochemical method using chemically modified electrode has the advantages of rapid response, cheap instrument, small volume, simple preparation process, high sensitivity, good reproducibility and low cost. In this paper, multiwalled carbon nanotubes, gold nanoparticles and malachite green are used as raw materials. Three chemically modified electrodes, carboxylated multiwalled carbon nanotubes / chitosan modified glassy carbon electrodes (c-MWCNTs/CS GCE), carboxylated multiwalled carbon nanotubes) and gold / chitosan modified glassy carbon electrodes were prepared by drop coating and electrochemical polymerization. Electrode (c-MWCNTs-Au/CS GCE) and poly (malachite green) modified glassy carbon electrode (PMG/GCE). Methods for determination of nitrite and orthophosphate. Electrochemical behavior of nitrite and orthophosphate on electrode. The main contents are as follows: (1) c-MWCNTs/CS GCE was used to detect 2H _ 4-dichlorophenol in water. The electrochemical behavior of 2H _ 4-dichlorophenol on the modified electrode was studied by cyclic voltammetry and differential pulse voltammetry. The results show that compared with bare glassy carbon electrode, c-MWCNTs / CS GCE significantly increases the oxidation peak current of 2% 4-dichlorophenol. Moreover, the electrochemical reaction of 2o 4- dichlorophenol at the modified electrode is a completely irreversible reaction controlled by diffusion with two electrons and two protons. The diffusion coefficient D is 1.5857 脳 10 ~ (-5) cm~2 s ~ (-1). The linear detection range was 0.2-1.0 mg/L,1.0-10 mg/L and the 10-80 mg/L, fitting rn was 20.99. The detection limit was 0.1 mg 路L ~ (-1) 路L ~ (-1). Detection of nitrite in water by differential pulse voltammetry: linear detection ranges from 0.1 to 1 mg / L ~ (10) mg/L and 10 ~ (- 80) mg/L,R~20.99, to 0. 01 mg/L. (2) c-MWCNTs-Au/CS GCE: preparation of c-MWCNTs-Au/CS GCE, by drop coating and preparation of c-MWCNTs-Au/CS GCE, by cyclic voltammetry and differential pulse voltammetry Electrochemical behavior of nitrite on modified electrode. The experimental results show that the GCE of c-MWCNTs-Aur / CS has a remarkable electrocatalytic effect on nitrite. The electrochemical reaction of nitrite on the modified electrode is a completely irreversible oxidation reaction with two electrons and no protons, and the reaction process is controlled by diffusion. The diffusion coefficient of sodium nitrite is 2.6403 脳 10 ~ (-6) cm~2 s ~ (-1). Determination of nitrite by cyclic voltammetry: the linear detection range is 0.8-10 mg/L and the detection limit of 10 ~ (-5) 00 mg/L,R~20.99, is 0.1 mg/L.. Detection of nitrite by differential pulse voltammetry: linear detection range of 0.05-1 mg/L and detection limit of 1-150 mg/L,R~20.99,: electrochemical behavior of phosphate on PMG/GCE: preparation of malachite green by cyclic voltammetry and cyclic polymerization of malachite green with cyclic voltammetry The electrochemical behavior of phosphomolybdic acid at modified electrode was studied by voltammetry and differential pulse voltammetry. The experimental results show that the electrocatalysis of molybdophosphoric acid by GCE, / PMG / GCE is significantly stronger than that of the electrochemical reaction of GCE, phosphomolybdic acid at the modified electrode. Each reversible reaction is composed of two electrons and two protons, and the reaction is controlled by diffusion. The diffusion coefficient of phosphomolybdic acid was 7.258502 脳 10 ~ (-6) cm~2 s ~ (-1). Cyclic voltammetry: linear detection range: 0. 01 mg/L and 1-12 mg/L,R~20.99, detection limit: 0. 04 mg/L. Differential pulse voltammetry: linear detection range 0.08-1 mg/L and 1-12 mg/L,R~20.99, detection limit 0. 01 mg/L.
【学位授予单位】:东北师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X830;O646

【相似文献】

相关期刊论文 前10条

1 张宏,桂学琴,金葆康;纳米金修饰玻碳电极在抗坏血酸共存下选择性测定多巴胺[J];分析科学学报;2002年03期

2 郁章玉,韩秀贞,秦梅,王汉卿;肾上腺素在二苯并18冠6修饰玻碳电极上的伏安特性[J];分析化学;2005年03期

3 王红娟;周春梅;余皓;彭峰;方锦坤;;多壁碳纳米管修饰玻碳电极用于过氧化氢的检测[J];电化学;2007年01期

4 孙唯;朱振中;徐吉勇;徐烽迪;赵顺祥;;基于多壁碳纳米管/壳聚糖多层膜修饰玻碳电极邻苯二酚的测定[J];分析试验室;2009年04期

5 杨阿喜;金根娣;葛纪龙;;汞膜修饰玻碳电极测定文法拉新的研究[J];药物分析杂志;2009年07期

6 张艺;戴延凤;杨平华;;聚溴酚蓝修饰玻碳电极同时伏安测定对硝基苯酚与间硝基苯酚[J];广东化工;2011年01期

7 任守信;高玲;刘金涛;;就地镀铜旋转圆盘玻碳电极上阳极溶出测定砷(Ⅳ)[J];分析化学;1990年06期

8 程琼,彭图治,胡晓波,杨丽菊;酮康唑在玻碳电极上的吸附行为及其测定[J];分析化学;1998年11期

9 Reza Ojani;Jahan-Bakhsh Raoof;Ali Asghar Maleki;Saeid Safshekan;;用聚(L-蛋氨酸)/纳米金修饰玻碳电极同时灵敏检测多巴胺和尿酸(英文)[J];催化学报;2014年03期

10 吕逍;娄长胜;张伟强;朱伟国;刘钧;李日升;;新型纳米铂修饰玻碳电极的制备及电催化性能研究[J];分析试验室;2014年04期

相关会议论文 前10条

1 陈静;黄燕生;邵会波;;三种氨基酸化学修饰玻碳电极表面荷电性质的比较[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年

2 韩晓霞;高作宁;;生理介质中硝普钠在玻碳电极上的电化学行为及电分析方法研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

3 杨阿喜;金根娣;葛纪龙;;汞膜修饰玻碳电极测定文法拉新的研究[A];2008年《药物分析杂志》第三届普析通用杯论文集[C];2008年

4 韩金土;;一步电沉积纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极测定邻苯二酚[A];河南省化学会2012年学术年会论文摘要集[C];2012年

5 黄金桃;杨昌柱;钱功明;张敬东;濮文虹;黄建;;半胱氨酸在纳米铂直接修饰玻碳电极上的电化学行为研究[A];第四届海峡两岸分析化学学术会议论文集[C];2006年

6 钟琴;辜敏;;MPS/PEG/Cl~-作用下铜在玻碳电极上的电结晶过程研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

7 曾冬梅;姜艳霞;孙世刚;;玻碳电极电化学原位FTIR光谱研究[A];第十四届全国分子光谱学术会议论文集[C];2006年

8 杨冬伟;刘慧宏;;桑色素在单壁碳纳米管修饰玻碳电极上的电化学行为研究[A];湖北省化学化工学会第十一届分析化学专业年会论文集[C];2007年

9 常燕;乔洁;上官灵芝;董川;;过氧化氢在多壁碳纳米管—氢氧化镍复合膜修饰玻碳电极上的电化学行为[A];中国化学会第26届学术年会分析化学分会场论文集[C];2008年

10 唐鹏鹏;柳闽生;陆可珂;刘正玉;陈炼;;石墨烯修饰玻碳电极直接测定BPA[A];中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法[C];2014年

相关硕士学位论文 前10条

1 杨迎亚;离子液体中电沉积Ni-La合金的研究[D];昆明理工大学;2015年

2 张杰;离子液体[BMIM][TfO]中铜、铟和镓电沉积行为的研究[D];哈尔滨工业大学;2015年

3 曹婷婷;氨化玻碳电极电化学传感及其电催化机理探究[D];大连理工大学;2015年

4 陈丽娜;一些Bcl-2家族蛋白的免标记检测[D];湖南师范大学;2015年

5 金芝梅;聚氨基酸/金属氰桥配位聚合物复合修饰玻碳电极在电分析化学中的应用研究[D];西北师范大学;2015年

6 席敏;基于氨化玻碳电极的酚类化合物电化学传感应用的研究[D];大连理工大学;2015年

7 金威韬;修饰玻碳电极的制备及其在环境污染物检测中的应用[D];东北师范大学;2016年

8 陈静;氨基酸化学修饰玻碳电极表面荷电性质的研究[D];首都师范大学;2006年

9 姚继开;玻碳电极上赖氨酸单层膜的制备及其电化学性质[D];首都师范大学;2005年

10 胡坤;电化学活化玻碳电极及其在电分析中的应用[D];厦门大学;2007年



本文编号:2247737

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2247737.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3a687***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com