二氧化碳合成碳酸酯催化剂的研究
[Abstract]:As a kind of greenhouse gas, carbon dioxide has the characteristics of low cost, non-toxicity and abundant reserves. Converting it into high value-added chemical products efficiently and greenly is of great significance for the rational utilization of waste resources and the reduction of greenhouse gas emissions. It is a hot spot in science and industry, in which carbon dioxide is combined with propylene oxide. Propylene carbonate has been widely used in textiles, printing and dyeing, batteries, polymer synthesis and so on. It also plays an important role in the synthesis of pharmaceutical and fine chemical intermediates. Catalysts, such as oxides, ammonium salts, phosphine salts, polymers, ionic liquids, still have the following problems: (1) high cost of catalysts but low catalytic activity; (2) catalysts are sensitive to air; (3) the reaction must rely on organic solvents; (4) the reaction process requires higher temperature and pressure, which are to be solved in the design of cycloaddition catalysts. Two catalytic systems have been developed to ensure high efficiency and mild catalysis. The first is the rare earth metalloporphyrin complex catalytic system. Different kinds of rare earth metalloporphyrin catalysts have been synthesized and characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy and nuclear magnetic resonance. The catalytic performance of rare earth metalloporphyrin complexes for cycloaddition of carbon dioxide with propylene oxide was investigated. _The reaction conditions were optimized. The effects of temperature, pressure and reaction time on the catalytic reaction were investigated. The optimum conditions for the catalytic reaction, ytterbium tetraphenylporphyrin, were given. The catalyst was prepared at 80 C, 1.5 MPa, without any solvent for 60 min. The yield of the product was 93%. _The catalytic system was optimized. The effects of different rare earth metal ions, different co-catalysts and different axial ligands on the catalytic activity of CO_2 to propylene oxide were investigated. The smaller the radius of metal ions, the higher the charge density, the stronger the Lewis acidity, and the more stable the metal-ligand coordination bonds can be formed, so the tetraphenylporphyrin lutetium exhibits the best catalytic effect; (2) the best co-catalyst is tetrabutylammonium bromide; (3) the electron-absorbing group is conducive to improving the central gold. Because of the Lewis acidity of metal ions, the axial CHLORINE-SUBSTITUTED metal complexes can promote the activation of propylene oxide and increase the yield of the product. The yield of propylene carbonate is up to 97% when the chlorotetraphenylporphyrin ytterbium complex is used as catalyst. _Change the catalytic performance of the reaction substrate to test the complex. Phenylethylene oxide, catalyzed by TPPYb/TBAB, can be effectively converted into corresponding organic carbonates by cycloaddition reaction with carbon dioxide. The yield of the product is more than 80%. The results show that the catalytic system has good versatility. The second kind is the metal chain complex catalytic system. 鍟惰兒涓洪厤浣撳悎鎴愪簡鍏釜鐩寸嚎鍨嬮噾灞炰覆閰嶅悎鐗Ni_6(渭_6-dpznda)_4(Cl)_2](PF6)_2(1),[Ni_6(渭_6-dpznda)_4(NCS)_2](PF6)_2(2),Ni_5(渭_5-dpznda)_4Cl_2(3),Ni_5(渭_5-dpznda)_4(NCS)_2(4),Co_5(渭_5-dpznda)_4Cl_2(5),Co_5(渭_5-dpznda)_4(NCS)_2(6),Cr_5(渭_5-dpznda)_4Cl_2(7),Cr_5(渭_5-dpznda)_4(NCS) The complexes were characterized by IR, MS and elemental analysis. Four ligands were spirally coiled with metal atoms, and the axial ligands were linearly arranged with metal atoms. Then the metal strings were synergistically catalyzed by tetrabutylammonium bromide (TBAB) to synthesize carbon dioxide and epoxides. Carbonate. Catalytic results show that metal complexes have good catalytic activity and the conversion frequency is as high as 23964 h~(-1).
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TQ225.52;O643.36
【相似文献】
相关期刊论文 前10条
1 马英哲;余良;孙春领;;季胺型三相催化剂[J];河南化工;1989年02期
2 李永存;;铜铁铝催化剂的制备方法[J];石油炼制与化工;1993年07期
3 杜星球;钱东;;耐温强酸性阳离子交换树脂催化剂的合成及应用[J];适用技术市场;2000年08期
4 王丽;李云庆;杨柳娜;郭成;王家喜;;磁性纳米负载钌催化剂的制备及其催化性能[J];精细石油化工;2009年01期
5 鲁亚东;王艳华;金子林;;以聚乙二醇为载体的催化剂及为反应介质的催化反应体系[J];有机化学;2006年02期
6 禹大龙;张玉芳;李秀艳;;磁性碳基固体磺酸催化剂的制备及其催化性能研究[J];化学与生物工程;2013年10期
7 ;从失效催化剂分离和回收金属[J];稀有金属;1997年02期
8 冉然;;在液相中实现连续多相催化反应的方法[J];辽宁化工;1978年04期
9 ;催化剂及助剂[J];精细与专用化学品;2001年11期
10 汤长青,杜新玲,王伟;合成乳酸正丁酯的主要催化剂述评[J];化学研究;2003年03期
相关会议论文 前1条
1 杨家宽;朱新锋;肖波;王秀萍;;大颗粒纳米晶TiO_2催化剂的制备及光催化性能研究[A];2004年全国太阳能光化学与光催化学术会议论文集[C];2004年
相关重要报纸文章 前1条
1 记者 钱大新;武石化催化剂回收有突破[N];中国石化报;2001年
相关博士学位论文 前10条
1 黄镇;新型酸功能化催化剂的研制及其在生物质转化过程中的应用[D];复旦大学;2014年
2 张杏梅;非对称席呋碱—锌催化剂对环氧化物与二硫化碳共聚制备聚硫代碳酸酯的研究[D];西北大学;2015年
3 袁静;生物质平台化合物高效还原转化的铜基催化新体系研究[D];复旦大学;2014年
4 刘敏;手性salen催化剂的膜固载与不对称催化性能研究[D];北京理工大学;2015年
5 张立;纤维结构化纳米Au-Pd催化剂的原电池反应制备及其催化气相草酸二甲酯加氢制乙二醇催化性能[D];华东师范大学;2015年
6 隆继兰;金属有机骨架基催化剂的制备及其液相加氢和氧化性能研究[D];华南理工大学;2015年
7 奚江波;高性能负载型钯基纳米催化剂的制备及其应用[D];华中科技大学;2015年
8 杨兵;绿色高效循环催化剂的环境友好制备与应用[D];山东师范大学;2016年
9 宋彦磊;碳水化合物催化降解制备5-羟甲基糠醛[D];北京化工大学;2014年
10 邹锐;铑纳米颗粒催化剂的制备及加氢应用[D];北京化工大学;2016年
相关硕士学位论文 前10条
1 孙慧敏;铼催化邻二醇脱氧脱水制备烯烃的研究[D];西北农林科技大学;2015年
2 朱秋莲;甲基苯液相氧化合成芳香酸的催化剂研究[D];浙江工业大学;2014年
3 徐晓宁;不对称氢转移反应合成手性α-苯乙醇催化剂的研究[D];华东理工大学;2016年
4 朱现波;新型催化剂对印染废水中典型染料的吸附降解性能研究[D];青岛科技大学;2016年
5 王晓月;新型纳米La_2O_3/AAO催化剂的制备研究[D];长春工业大学;2016年
6 林志坤;ABO_3型复合氧化物催化尿素醇解合成碳酸丙烯酯[D];武汉工程大学;2014年
7 李冬冬;聚合物类杂多化合物催化剂的制备及其酯化反应性能研究[D];郑州大学;2016年
8 程天元;CoNC、FeNC催化剂活性中心的探究及其在液相催化氧化、加氢反应中的应用[D];华南理工大学;2016年
9 王千里;基于树状聚合物模板的Pt基催化剂的制备及性能研究[D];东南大学;2016年
10 赵光武;双/多中心手性salen Ti(Ⅳ)催化剂协同催化硫醚不对称氧化反应研究[D];湖南师范大学;2016年
,本文编号:2249024
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2249024.html