红外光谱技术的三文鱼肉假冒鉴别
[Abstract]:Domestic salmon market is mixed, counterfeit problem is serious, but the identification method is limited. Infrared spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to study the impersonation of salmon from Heilongjiang, freshwater rainbow trout and Chilean Pacific salmon to Norwegian salmon. The original spectra of four kinds of meat were collected by FITR spectrometer and KBr compression method, and the original spectra were smoothed by multielement scattering correction (MSC), Savitzky-Golay, respectively. The first derivative (first derivative), standard canonical transformation (SNV), peak area normalization (peak area normalization) five pretreatments to eliminate noise and other interference factors and to determine the best pretreatment method. In order to establish the PLS-DA discriminant model, the spectra of four kinds of fish were assigned to four reference scores of -1 and 3, respectively, and the veracity of the model was tested by predicting the fish meat score. The results show that when the peak area normalization method is used, the PLS-DA detection model has the best effect, and the determination coefficients of the calibration set and the cross-validation set are 0.97 and 0.37 and 0.52 for 0.95.RMSEC and RMSECV, respectively. The model can distinguish four kinds of fish significantly, the prediction scores of the detection set are clustered around their respective reference points respectively, and the prediction accuracy is 96 when the threshold value is 卤1. At the same time, the spectrum of four kinds of fish was analyzed by Markov distance method, and it was found that there were obvious differences among them, among which the distance between Norwegian salmon and freshwater rainbow trout, which had the biggest difference in species, was the largest. The distance of Chilean Pacific salmon is the smallest, and the infrared spectrum information can reflect the difference of species and living environment of different fish. Therefore, the use of infrared spectroscopy combined with PLS-DA method can accurately identify other fish to Norway salmon impersonation, and at the same time for other meat detection has certain reference significance.
【作者单位】: 华南农业大学工程学院 教育部南方农业机械与装备关键技术重点实验室 广东省食品质量安全重点实验室;仲恺农业工程学院信息科学与技术学院 广东省食品安全与智能控制工程技术研究中心;
【基金】:国家自然科学基金青年项目(61501531) 广东省自然科学基金项目(2015A030313602) 广东省科技计划项目(2015A020209173) 广州市产学研协同创新重大专项(201508010013,201704020030)资助
【分类号】:O657.33;TS254.7
【相似文献】
相关期刊论文 前10条
1 李静;李美超;莫卫民;;显微红外光谱技术的发展及应用[J];理化检验(化学分册);2009年10期
2 钟捷;;红外光谱技术在气体检测分析中的应用[J];化工管理;2013年18期
3 王绪明;;近三年红外光谱技术的应用与新进展[J];光谱仪器与分析;1996年01期
4 袁鹏;崔蔓;庄一迪;蒙振章;陈建军;;用红外光谱技术研究打蜡梨的红外光谱特性[J];红外;2014年01期
5 姚炜;夏彩云;;红外光谱技术在食品安全检测中的应用[J];中国卫生检验杂志;2009年06期
6 宋浩;;红外光谱技术在汽油性质测定中的应用研究[J];中国石油和化工标准与质量;2013年09期
7 申柯娅;红外光谱技术在翡翠鉴定中的应用[J];光谱实验室;2000年03期
8 王平萍;辜琦蕲;刘婷婷;刘青;倪凯;;基于表面增强红外光谱技术的大肠杆菌的快速检测方法研究[J];科技致富向导;2014年08期
9 刘敏娜,王桂清,卢其斌;红外光谱技术的进展及其应用[J];精细化工中间体;2001年06期
10 姚冰洁;金韶华;陈树森;史彦山;李丽洁;范洪毅;;在线红外光谱技术研究乌洛托品与醋酸体系的反应[J];兵工学报;2013年02期
相关会议论文 前2条
1 陈昱;周群;孙素琴;;红外光谱技术对清香型白酒的品质分析[A];第十四届全国分子光谱学术会议论文集[C];2006年
2 李璐;周群;孙素琴;;红外光谱技术与巧克力的质量评价[A];第十四届全国分子光谱学术会议论文集[C];2006年
相关硕士学位论文 前2条
1 宋思远;中红外光谱技术对液态乳中掺入非蛋白氮物质检测的研究[D];河北科技大学;2013年
2 温国丽;红外光谱技术用于食品分析及生物传感的初步研究[D];湖南大学;2011年
,本文编号:2272611
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2272611.html