PTA氧化过程中4-CBA含量的软测量建模研究
[Abstract]:The PTA oxidation process is an important chemical reaction process in petrochemical production. The reaction product is an important chemical raw material for the production of polyester products. 4-CBA is the main by-product in the oxidation process. The reaction conditions of the PTA oxidation process are harsh. The reaction mechanism and reaction process are complex, and the soft sensing technique is used to predict the reaction process in real time. Soft sensing technology uses some measurable variables to predict unmeasurable variables. In this paper, the oxidation process of PTA is studied. Taking the content of 4-CBA as the research object, the soft sensing model is established by AdaBoost algorithm. The AdaBoost algorithm is a combination algorithm, which combines a group of weak learning devices with different training into strong learning devices. In this paper, BP neural network and support vector machine are selected as weak learning devices. In order to solve the problem of training weakening in AdaBoost algorithm, the method of double threshold is used to update the weight of samples, to reduce the influence of the samples with large errors on the weak learner, and the method of roulette is used to resample the samples. The feasibility of the improved algorithm is proved by nonlinear function fitting. Aiming at the soft sensing model of 4-CBA content in the process of PTA oxidation, BP neural network and support vector machine are used as weak learning devices, and the improved AdaBoost algorithm is used as strong learning device to establish soft sensor model. The 4-CBA content is predicted by MATLAB training simulation. And compared with the single weak learner model and the unimproved AdaBoost algorithm, it is proved that the improved soft sensor model based on the improved AdaBoost algorithm is more accurate in these models.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;O633.14
【参考文献】
相关期刊论文 前10条
1 刘庆华;丁文涛;涂娟娟;方守恩;;优化BP_AdaBoost算法及其交通事件检测[J];同济大学学报(自然科学版);2015年12期
2 袁双;吕赐兴;;基于PCA改进的快速Adaboost算法研究[J];科学技术与工程;2015年29期
3 查翔;倪世宏;张鹏;;关于AdaBoost.RT集成算法时间序列预测研究[J];计算机仿真;2015年09期
4 曹莹;苗启广;刘家辰;高琳;;AdaBoost算法研究进展与展望[J];自动化学报;2013年06期
5 胡国胜;;基于加权支持向量机与AdaBoost集成的预测模型研究[J];计算机应用与软件;2012年12期
6 金斌;高计勇;;CL语言在4-CBA软测量中的应用[J];石油化工自动化;2012年05期
7 姚科田;邵之江;陈曦;纪彭;蒋鹏飞;;基于数据驱动技术和工艺机理模型的PTA生产过程软测量建模方法[J];计算机与应用化学;2010年10期
8 王孝红;刘文光;于宏亮;;工业过程软测量研究[J];济南大学学报(自然科学版);2009年01期
9 王立;朱学峰;;一种基于Boosting的在线回归算法[J];计算机测量与控制;2008年06期
10 董辉;傅鹤林;冷伍明;龙万学;;Boosting集成支持向量回归机的滑坡位移预测[J];湖南大学学报(自然科学版);2007年09期
相关会议论文 前1条
1 李雅芹;杨慧中;;基于改进的Adaboost.RT模糊支持向量回归机集成算法[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
相关博士学位论文 前1条
1 牟盛静;石化工业过程建模与优化若干问题研究[D];浙江大学;2004年
相关硕士学位论文 前3条
1 张茂强;精对苯二甲酸生产技术工艺研究[D];山东大学;2007年
2 邵可可;PTA生产工艺的全流程模拟[D];浙江大学;2007年
3 刘洁;对苯二甲酸生产全流程模拟[D];天津大学;2007年
,本文编号:2279939
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2279939.html