当前位置:主页 > 科技论文 > 化学论文 >

基于近红外自相关谱检测奶粉中的三聚氰胺

发布时间:2018-11-03 10:36
【摘要】:发展了一种基于近红外自相关谱定性定量分析掺三聚氰胺奶粉的检测方法。分别配置40个纯奶粉样品和40个不同质量百分比浓度的掺三聚氰胺奶粉(10-4%~40%,w/w)样品,采集了所有样品的一维近红外漫反射光谱,以奶粉中掺入的三聚氰胺浓度为外扰进行相关计算,选择随浓度变化敏感的7 000~4 200cm-1为建模区间。在提取自相关谱信息的基础上,建立了定性定量分析掺三聚氰胺奶粉的偏最小二乘模型,并与常规一维近红外谱模型的预测结果进行了比较。所建立的方法对未知样品的识别正确率为100%,预测均方根误差(RMSEP)为0.63%;而一维近红外谱的识别正确率为96.2%,RMSEP为0.84%。研究结果表明:相对于常规一维近红外谱,所建立的方法能提供更好的预测结果,其原因可能是自相关谱能提取更多的特征信息。
[Abstract]:A method for qualitative and quantitative analysis of melamine-doped milk powder based on near-infrared autocorrelation spectroscopy was developed. Forty samples of pure milk powder and 40 samples of melamine-doped milk powder (10-4%) with different mass percent concentrations were prepared respectively, and all samples were collected from 1-D near-infrared diffuse reflectance spectra. The concentration of melamine adulterated in milk powder was used as the external disturbance to calculate the correlation. The sensitive 7 000 200cm-1 was selected as the modeling interval. On the basis of extracting autocorrelation spectrum information, a partial least square model for qualitative and quantitative analysis of melamine-doped milk powder was established, and the prediction results were compared with the conventional one-dimensional near infrared spectrum model. The accuracy of the proposed method is 100 for unknown samples, and 0.63 for root-mean-square error (RMSEP), while that for one-dimensional near-infrared spectrum is 96.2and 0.84. The results show that the proposed method can provide better prediction results than the conventional one dimensional near infrared spectra, which may be due to the fact that autocorrelation spectra can extract more feature information.
【作者单位】: 天津农学院农学与资源环境学院;天津农学院农业分析测试中心;天津农学院工程技术学院;
【基金】:天津市科技特派员项目(16JCTPJC47500) 国家自然科学基金基金项目(31201359,81471698) 天津市自然科学基金项目(14JCYBJC30400,14JCYBJC43700)资助
【分类号】:O657.33;TS252.51


本文编号:2307537

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2307537.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fe0f3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com