当前位置:主页 > 科技论文 > 化学论文 >

铁皮石斛多糖结构及其硫酸化衍生物活性研究

发布时间:2018-11-03 21:55
【摘要】:目的:研究铁皮石斛中多糖大分子及其衍生物的结构特征与生物活性,为研究铁皮石斛中基于大分子多糖的生物活性物质基础及其相关质量控制以及基于石斛多糖创新药物研究奠定理论与物质基础。方法:本课题采用沸水提-乙醇沉、氢氧化钠提-乙醇沉的方法获得铁皮石斛水提粗多糖以及铁皮石斛碱提粗多糖。采用酶解法,阴离子交换法以及凝胶过滤色谱法分离纯化出均一多糖。采用糖组成分析,部分酸水解、甲基化、红外、核磁等化学和物理的方法对多糖性质及结构进行深入解析。采用氯磺酸-吡啶法(1:3)进行多糖的硫酸化衍生。人微血管内皮细胞(HMEC-1)的管腔形成实验以及划痕迁移实验用来考察铁皮石斛多糖及其硫酸化衍生物的抗血管生成能力。MTT法来检测铁皮石斛多糖及其衍生物对不同肿瘤细胞株增殖的抑制作用以及对人正常肝细胞LO2和HMEC-1细胞的毒性。结果:(1)从1.5 Kg铁皮石斛干燥茎中得到水提粗多糖DOW 304.0 g(得率为20.3%)和碱提粗多糖DOA 14.0 g(得率为0.9%)。(2)DOW经分离纯化后得到两种均一多糖5A以及5B,分子量分别为1.6×104 Da和8.2×103 Da。糖组成分析表明:5A由葡萄糖(glucose,Glc)、甘露糖(mannose,Man)、阿拉伯糖(arabinose,Ara)、半乳糖(galactose,Gal)、木糖(xylose,Xyl)组成,其摩尔比例为55.7:39.7:1.4:0.6:2.6,结构分析表明5A是以1,4-α-D-Glcp、1,4-β-D-Manp为主链,支链主要包括α和β构型的末端(terminal,T)-D-Glcp、T-Xyl以及T-Ara。支链连接于主链糖残基1,4-α-D-Glcp的C-6位;5B由Glc、Man和少量的Xyl组成,其摩尔比例为91.9:6.5:1.6,结构分析表明5B是以1,4-α-D-Glcp和极少量的1,4-β-D-Manp为主链,支链主要包含T-α-D-Glcp,木糖可能存在于支链上。支链连接于主链糖残基1,4-α-D-Glcp的C-6位。(3)DOA经分离纯化后得到两个均一酸性异木聚糖S32和S33S1,分子量分别为3.7×104Da和6.9×103 Da。糖组成分析结果表明:S32由Ara,Xyl,Glc,Gal,鼠李糖(rhamnose,Rha)和4-甲氧基-葡萄糖醛酸(4-methoxyl-glucuronic acid,4-MGA)组成,各单糖的比例为8.9:62.7:8.5:3.7:3.9:12.3;S33S1糖组成为Xyl,Ara,Glc和4-MGA,比例为6.1:79.8:1.2:12.9。结构分析表明S32和S33S1均是以1,4-β-D-Xylp为主链,分支连接于主链糖残基的C-2位。S32的分枝主要由T-4-Me O-α-D-Glc Ap、1,4-α-D-Glcp、1,3-α-L-Rhap、T-α-L-Araf、T-β-D-Galp以及T-β-D-Xylp组成。S33S1的支链较简单,主要包含T-4-Me O-α-D-Glc Ap、T-β-D-Xylp以及T-α-L-Araf。(4)5B和S32经硫酸化修饰分别得到S5B和S32S,分子量分别为1.8×104 Da和5.4×104 Da。氯化钡-明胶法测得二者硫酸基取代度分别为0.92和0.90。结构分析表明前者的硫酸化取代位点主要为1,4-α-D-Glcp和T-α-D-Glcp的C-6位。而后者硫酸化位点主要包括1,4-β-D-Xylp的C-2或者C-3位、少部分的1,2,4-β-D-Xylp的C-3位、T-4-MGA的C-3位以及1,4-α-D-Glcp的C-6位。(5)生物活性测试结果表明,未硫酸化的多糖5B和S32对HMEC-1细胞的管腔形成几乎没有影响,而硫酸化的多糖S5B和S32S均可以在低浓度(5.95μM,0.29μM)时呈现抑制HMEC-1细胞管腔形成和细胞迁移的活性,在较高浓度时1 mg/m L(47.62μM,18.52μM)对人正常的肝细胞LO2以及HMEC-1细胞几乎没有毒性。结论:(1)本课题获得4种均一多糖。从水提粗多糖中纯化出5A和5B;从碱提粗多糖中纯化出S32和S33S1。(2)5A和5B主要是以1,4-α-D-Glcp和1,4-β-D-Manp为主链的甘葡聚糖;S32和S33S1是以1,4-β-D-Xylp为主链的酸性异木聚糖。(3)铁皮石斛多糖硫酸化衍生物S5B以及S32S具有抗血管生成能力,硫酸基团对生物活性的发挥有着重要的作用。
[Abstract]:Objective: To study the structural characteristics and biological activities of polysaccharide macromolecules and their derivatives in Dendrobium candidum. METHODS: The crude polysaccharides of Dendrobium candidum and crude polysaccharides of Dendrobium candidum were obtained by boiling water extraction-ethanol precipitation, sodium hydroxide extraction-ethanol precipitation. The polysaccharide was isolated and purified by enzymatic hydrolysis, anion exchange and gel filtration chromatography. The properties and structure of polysaccharides were analyzed by chemical and physical methods such as sugar composition analysis, partial acid hydrolysis, methylation, infrared, nuclear magnetic and other chemical and physical methods. Sulfation of polysaccharides was carried out by chlorosulfonic acid-Fenton method (1: 3). The tube cavity formation experiment and scratch migration experiment of human microvascular endothelial cells (HMEC-1) were used to investigate the anti-angiogenic ability of Dendrobium candidum polysaccharide and sulfated derivatives. MTT assay was used to detect the inhibitory effect of Dendrobium candidum polysaccharide and its derivatives on the proliferation of different tumor cell lines, as well as the toxicity to human normal hepatocytes LO2 and HMEC-1 cells. Results: (1) The DOW 304. 0g of the crude polysaccharide was obtained from the dried stem of Dendrobium candidum 1. 5Kg (the yield was 20.3%) and the DOA of the crude polysaccharide was 14.0g (the yield was 0. 9%). (2) DOW was isolated and purified to obtain two homogeneous polysaccharides (5A and A21), and their molecular weights were 1. 6, 104 Da and 8. 2, 103 Da, respectively. The composition analysis indicated that 5A was composed of glucose (Glc), mannose (Mannose, Man), arabinose, Ara, galactose, xylose, xylose and Xyl. Its molar ratio was 55. 7: 39. 7: 1. 4: 0. 6: 2.6. The structure analysis showed that 5A was the main chain of 1,4-dioxane-D-Glcp, 1,4-dioxane-D-Manp. The branched chain mainly includes terminal (T)-D-Glcp, T-Xyl, and T-Ara. the branched chain is connected to the C-6 position of the main chain sugar residue 1,4-dioxane-D-Glcp; the branched chain is composed of Glc, Man and a small amount of Xyl, the molar ratio of which is 91.9: 6.5: 1.6, and the structure analysis shows that the branched chain is a main chain of 1,4-dioxane-D-Glcp and a very small amount of 1,4-dioxane-D-Manp, and the branched chain mainly comprises T-MAA-D-Glcp, xylose may be present on the branched chain. The branched chain is connected to the C-6 position of the main chain sugar residue 1,4-dioxane-D-Glcp. (3) The DOA was separated and purified to obtain two homogeneous acidic xylanase S32 and S33S1 with a molecular weight of 3. 7-104Da and 6. 9-0103 Da, respectively. The results of the composition analysis showed that: S32 was composed of Ara, Xyl, Glc, dioxane, nose (rhamnose, Rha) and 4-methoxy-glucononic acid (4-MGA). The ratio of each monosaccharide was 8. 9: 62. 7: 8. 5: 3. 7: 3. 9: 12. 3; S33S1 sugar was composed of Xyl, Ara, Glc and 4-MGA, and the ratio was 6. 1: 79. 8: 1. 2: 12. 9. The structural analysis shows that S32 and S33S1 are the main chains of 1,4-dioxane-D-Xylene, and the branches are connected to the C-2 position of the main chain sugar residue. The branches of S32 are mainly composed of T-4-Me O-A-D-Glc Ap, 1,4-dioxane-D-Glcp, 1,3-dioxane-L-Rhap, T-Et-L-Araf, T-GaP-D-Galp, and T-GaP-D-Xylene. The branched chain of S33S1 is relatively simple, mainly containing T-4-Me O-A-D-Glc Ap, T-Et-D-Xylene and T-Et-L-Araf. (4) S300 and S32S, respectively, were obtained by sulfation modification of quercetin and S32, and the molecular weights were 1. 8 to 104 Da and 5. 4 to 104 Da, respectively. The substitution degree of sulfuric acid was 0.992 and 0.990, respectively. The structural analysis indicated that the former was the C-6 position of 1,4-dioxane-D-Glcp and T-GaP-D-Glcp. The latter mainly consists of the C-2 or C-3 bits of 1,4-dioxane-D-Xylene, the C-3 position of the small part of 1, 2, 4-GaP-D-Xylp, the C-3 position of T-4-MGA, and the C-6 position of 1,4-dioxane-D-Glcp. (5) The results of biological activity test showed that the non-sulfated polysaccharides S300 and S32 had little effect on the tube cavity formation of HMEC-1 cells, but the sulfated polysaccharides S32S and S32S could inhibit the formation of HMEC-1 cell and the activity of cell migration at low concentration (5.95. mu.M, 0. 29. mu.M). At higher concentrations, 1 mg/ m L (47. 62. mu.M, 18. 52. mu.M) had little toxicity to human normal liver cells LO2 and HMEC-1 cells. Conclusion: (1) Four kinds of polysaccharides were obtained in this study. 5A and S33S1 were purified from the crude polysaccharide of water; S32 and S33S1 were purified from the crude polysaccharide. (2) 5A and S33S1 mainly consist of 1,4-dioxane-D-Glcp and 1,4-dioxane-D-Manp as the main chain; S32 and S33S1 are acidic isoxylans with 1,4-dioxane-D-Xylene as the main chain. (3) The sulfated derivatives SS32S and S32S of Dendrobium candidum have anti-angiogenic ability, and sulfuric acid groups play an important role in the biological activity.
【学位授予单位】:遵义医学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O629.12

【相似文献】

相关期刊论文 前10条

1 曾万勇;李金华;王智;杨玉稳;胡倩;;铁皮石斛无菌萌发及小苗快繁培养条件研究[J];武汉工业学院学报;2012年03期

2 聂少平;蔡海兰;;铁皮石斛活性成分及其功能研究进展[J];食品科学;2012年23期

3 ;新鲜的铁皮石斛将净化铁皮石斛市场,实实在在的为百姓谋福[J];养生月刊;2006年09期

4 丁鸽;张代臻;张伟超;丁小余;;保健食品铁皮石斛及其混淆品的分子鉴别及亲缘关系分析[J];食品科学;2011年02期

5 李昊;吕鼎豪;;铁皮石斛药用成分研究进展[J];光谱实验室;2013年04期

6 本刊讯;;养在高山里的铁皮石斛[J];中国药学杂志;2013年19期

7 何伯伟;;浙江铁皮石斛产业品质提升的实践与探索[J];中国药学杂志;2013年19期

8 刘亚娟;王诗豪;张铭;华允芬;;铁皮石斛多糖抗癌及免疫活性研究[J];广州化工;2014年10期

9 郝梅梅;郝冬冬;;高氧结合高二氧化碳处理对铁皮石斛采后品质的研究[J];食品科技;2014年08期

10 史永忠,潘瑞炽,王小菁,叶庆生,郭丽荣;铁皮石斛种质资源的低温离体保存[J];应用与环境生物学报;2000年04期

相关会议论文 前10条

1 诸燕;斯金平;张爱莲;;人工栽培铁皮石斛多糖质量分数研究[A];第八届全国药用植物及植物药学术研讨会论文集[C];2009年

2 陈立钻;倪云霞;孙继军;范华芬;许安玲;;铁皮石斛传统加工品与机械加工品的多糖含量对比研究[A];全国第六届天然药物资源学术研讨会论文集[C];2004年

3 郭英英;刘京晶;斯金平;;雁荡山不同树种活树附生铁皮石斛多糖含量差异比较[A];生态文明建设中的植物学:现在与未来——中国植物学会第十五届会员代表大会暨八十周年学术年会论文集——第4分会场:资源植物学[C];2013年

4 王伯初;李标;;响应声波加载的铁皮石斛差异表达基因筛选及其功能初步研究[A];2008年全国生物流变学与生物力学学术会议论文摘要集[C];2008年

5 丁小余;侯北伟;谢明璐;;珍稀铁皮石斛基于微卫星标记的种质鉴别与保护遗传学研究[A];第九届全国药用植物及植物药学术研讨会论文集[C];2010年

6 朱波;斯金平;苑鹤;;铁皮石斛杂交育种的初步研究[A];第九届全国药用植物及植物药学术研讨会论文集[C];2010年

7 李宏博;张宏宇;朴钟云;;铁皮石斛组织培养研究[A];第九届全国药用植物及植物药学术研讨会论文集[C];2010年

8 斯金平;;铁皮石斛可持续发展关键技术研究进展[A];第十届全国药用植物及植物药学术研讨会论文摘要集[C];2011年

9 金璐英;斯金平;张爱莲;魏涛;莫伊娜;;铁皮石斛中基本氨基酸含量变异规律[A];第十届全国药用植物及植物药学术研讨会论文摘要集[C];2011年

10 张治国;刘骅;夏志俊;王君晖;黄纯农;;铁皮石斛种子的超低温保存[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年

相关重要报纸文章 前10条

1 本报记者 王晶晶;铁皮石斛扎根浙江[N];中国经济导报;2006年

2 施仁潮;铁皮石斛研究成果验收[N];科技日报;2006年

3 张文聪;做大铁皮石斛种植业 帮助群众走上致富路[N];韶关日报;2007年

4 本报记者 何潭振 戴正聪;让所有老百姓都能吃得起铁皮石斛[N];中国食品质量报;2006年

5 本报记者  王蔚佳;铁皮石斛神话如何延续[N];中国医药报;2006年

6 施文;浙江将出台铁皮石斛品种标准[N];中国中医药报;2006年

7 本报记者 施仁潮;他让濒危中药铁皮石斛重获新生[N];中国中医药报;2008年

8 中华中医药学会 庄乾竹;宝宝能喝铁皮石斛水吗?[N];健康时报;2008年

9 王英;“工厂”里种出铁皮石斛[N];苏州日报;2008年

10 收集整理 军野;铁皮石斛的文化渊源[N];世界报;2008年

相关博士学位论文 前10条

1 孙婧;铁皮石斛提取物及其活性成分毛兰素对人乳腺癌细胞抑制作用的研究[D];吉林大学;2016年

2 梁楚燕;基于衰老雌鼠模型探讨铁皮石斛“补肾”功效的科学内涵[D];广州中医药大学;2016年

3 徐程;铁皮石斛种质资源与组培工厂化生产研究[D];浙江大学;2006年

4 包英华;铁皮石斛种质资源的鉴定与评价研究[D];广州中医药大学;2014年

5 严亮;中国传统兰科药用植物铁皮石斛基因组及其生物学特性研究[D];吉林大学;2014年

6 张泽锦;铁皮石斛的光合碳同化途径及其对环境变化的生理响应[D];中国农业大学;2014年

7 赵兴兵;超微铁皮石斛对脾虚便秘小鼠肠道微生物的影响研究[D];湖南中医药大学;2014年

8 李标;声波刺激对铁皮石斛生长代谢的影响及其相关基因表达和克隆研究[D];重庆大学;2007年

9 滕建北;铁皮石斛与美花石斛茎尖生长机理及其多糖累积规律研究[D];成都中医药大学;2009年

10 关杰敏;铁皮石斛良种繁育与GAP种植关键技术研究[D];广州中医药大学;2014年

相关硕士学位论文 前10条

1 诸燕;铁皮石斛种质资源收集与评价[D];浙江农林大学;2010年

2 辛甜;组培铁皮石斛的品质评价研究[D];辽宁中医药大学;2011年

3 戴燕萍;铁皮石斛生产质量管理规范研究[D];浙江农林大学;2012年

4 王俊洁;铁皮石斛体细胞无性变异的生药学初步研究[D];云南中医学院;2012年

5 李东宾;冷胁迫下铁皮石斛抗寒基因的克隆与表达研究[D];浙江农林大学;2013年

6 冯云;铁皮石斛储藏与加工特性研究[D];华南理工大学;2015年

7 邓星燕;铁皮石斛紫外指纹图谱研究[D];云南民族大学;2015年

8 朱梦丽;铁皮石斛甘露糖结合凝集素的分子建模与对接研究,及NAC基因组序列的克隆[D];西南交通大学;2015年

9 陈尔;铁皮石斛组培快繁技术的优化[D];中南林业科技大学;2015年

10 任洁;铁皮石斛组培苗培养及丛生芽增殖体系的建立[D];南京师范大学;2015年



本文编号:2309153

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2309153.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1647c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com