固体酸催化合成2-戊基蒽醌的研究
[Abstract]:Alkyl peroxide is an important fine chemical intermediate, and is the main raw material for the synthesis of the sulfur-based dye. It is also used as a catalyst for the synthesis of hydrogen peroxide. It occupies an important position in the national economy and has important industrial value. 2-AAQ is the main intermediate and raw material for producing ultra-pure hydrogen peroxide (H _ 2O _ 2), degrading resin, dye and photosensitive compound because of high stability, good working fluid compatibility and high catalytic efficiency in the production of hydrogen peroxide. The conventional 2-AAQ production process is as follows: Lewis acid (AlCl3) is used to catalyze the Friedel-Crafts of 2-pentylbenzene and benzene to synthesize the intermediate 2-(4-pentylphenyl) benzoic acid (ABB), and then the 2-AAQ is synthesized with concentrated sulfuric acid or fuming sulfuric acid for ABB dehydration closed-loop synthesis. but the process produces a large amount of waste acid, not only the equipment but also the environment. Therefore, a new catalytic process is developed, and the green synthesis of 2-AAQ has a wide application prospect. In this paper, the environment-friendly solid acid catalyst is used as the zeolite molecular sieve, and the traditional concentrated sulfuric acid catalyst is used to catalyze the synthesis of 2-AAQ by the reaction of the ABB dehydration condensation reaction. The results of the catalytic performance of different types of solid acid catalysts show that the H-Beta zeolite molecular sieve is more favorable for the reaction, and the selectivity of 2-AAQ is 99.2% by the optimization of the modification and the process conditions, and the conversion rate of the ABB reaches 95.8%. The invention solves the problems of no re-use of the catalyst, difficult separation of the catalyst and the product after the reaction, and opens up a new green process for the production of 2-AAQ. In addition, we try to replace the traditional Lewis acid catalyst with the supported catalyst to catalyze the Friedel-Crafts-based reaction of the pentylbenzene and the benzene to synthesize the ABB. The results show that the yield of ABB is low and the production process needs to be further optimized. The specific content of the study is as follows: 1. the catalyst Beta zeolite molecular sieve is synthesized by using cheap kieselguhr as a silicon source and an aluminum source through a hydrothermal synthesis method. The effect of the gel composition, the amount of H _ 2O, the crystallization time, the crystallization temperature and the like on the synthetic Beta zeolite molecular sieve was investigated, and it was applied to the synthesis of 2-AAQ. 2.H-Y, H-ZSM-5, H-Beta, phosphotungstic acid, and P-The catalytic performance of the solid acid catalyst such as montmorillonite and other solid acid catalysts shows that the H-Beta zeolite molecular sieve exhibits better catalytic performance in the 2-AAQ process of the ABB dehydration closed-loop synthesis, and the conversion rate of ABB and the selectivity of 2-AAQ are all higher than that of other types of solid acid catalysts. The catalytic effect of the H-Beta zeolite molecular sieve modified by organic acid (citric acid) on the synthesis of 2-AAQ by the dehydration of ABB was better than the catalytic effect when the catalyst was modified with CeCl _ 3 路 7H _ 2O and ZrOCl _ 2 路 8H _ 2O. The catalytic performance of the H-Beta zeolite molecular sieve modified by citric acid is affected by the number of ion exchange, with the increase of the exchange times, the total acid amount is reduced, the relative content of the weak acid is reduced, the relative content of the strong acid is increased, the catalytic performance is improved, and the exchange of the two effects is optimal. The optimum reaction conditions were as follows: the amount of the catalyst was 28. 6% of the raw material, the reaction temperature was 280.degree. C., the reaction time was 1. 5 h, the conversion of ABB was obtained by the high performance liquid chromatography area normalization method, and the selectivity of 2-AAQ was 99.2%. The experimental results of the activity stability of the catalyst show that the catalytic effect of the catalyst is obviously reduced after 3 times of repeated use of the catalyst. and the conversion rate of the catalyst after high-temperature roasting regeneration can reach 97. 7%, the selectivity of the 2-AAQ is more than 84.3%, and the catalytic performance can be recovered. The modified Beta zeolite molecular sieve catalyst was characterized by XRD, SEM, TG, IR, NH3-TPD and BET. The intermediate ABB and the product 2-AAQ were obtained by the water-washing and acid-washing process, and the intermediate ABB and the target product 2-AAQ were confirmed by IR, 1H NMR and 13C NMR.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36;TQ244.63
【相似文献】
相关期刊论文 前10条
1 ;蒽醌硝化还原制1—氨基蒽醌[J];染料工业;1970年03期
2 ;西德新建一坐新工艺生产蒽醌的工厂[J];染料工业;1978年03期
3 ;关于蒽醌的化学性质及分析检验[J];四川造纸;1979年01期
4 王芳峨;;关于蒽醌[J];四川造纸;1980年04期
5 张惠民;;苯酐法制蒽醌技术改进[J];辽宁化工;1983年05期
6 兰泽冠;左新举;;蒽醌型蓝色分散染料的合成研究[J];染料工业;1990年05期
7 劳嘉葆;;四氢蒽醌与蒽醌效果比较[J];纸和造纸;1991年03期
8 杨威;;近年印度蒽醌的产量及出口量[J];染料工业;1991年01期
9 苑正霞;;蒽氧化制蒽醌的方法探讨[J];河南化工;1992年02期
10 蔡文祥;合理使用蒽醌[J];纸和造纸;1995年02期
相关会议论文 前9条
1 李玉林;车国冬;王凌云;周国英;胡凤祖;索有瑞;陈桂琛;;青海栽培唐古特大黄中蒽醌含量的季节动态变化研究[A];首届中国中西部地区色谱学术交流会暨仪器展览会论文集[C];2006年
2 王强;罗云;金城;任永申;王伽伯;曲毅;肖小河;;干燥方式和条件对大黄水提液蒽醌和鞣质成分含量的影响[A];中华中医药学会中成药学术研讨会论文集[C];2007年
3 李先端;黄璐崎;;炮制对中药大黄5种蒽醌成分含量的影响[A];全国中药标准研究学术研讨会论文集[C];2005年
4 时蕾;王振平;刘艳春;张贵生;;新型蒽醌缩氨基硫脲化合物的合成及抗肿瘤活性研究[A];河南省化学会2012年学术年会论文摘要集[C];2012年
5 张廷剑;袁伟燕;王琳;孟繁浩;;N6-(蒽醌-2-甲酰胺)-腺嘌呤类化合物的制备及其作为DNA电子供体的研究[A];2011年全国药物化学学术会议——药物的源头创新论文摘要集[C];2011年
6 冯亚华;;测定蒽醌含量的方法与探讨[A];新世纪优秀学术成果评选暨交流大会论文集[C];2000年
7 李翠翠;杨海龙;魏华;张平竹;王克让;李小六;;蒽醌并杂环衍生物的合成及抗肿瘤活性的研究[A];第八届全国化学生物学学术会议论文摘要集[C];2013年
8 李大川;尹应武;;钯/多壁碳纳米管催化2-乙基蒽醌加氢生产过氧化氢[A];中国化学会第29届学术年会摘要集——第34分会:纳米催化[C];2014年
9 徐新亚;刘训红;;决明子炮制前后蒽醌含量的变化[A];全国中药研究与开发学术研讨会论文摘要集[C];2001年
相关重要报纸文章 前2条
1 郭焰;国内最大氧化蒽醌项目启动[N];中国化工报;2000年
2 孟晖;2-烷基蒽醌与过氧化氢共增长[N];中国化工报;2004年
相关博士学位论文 前2条
1 贾振宝;决明子中蒽醌化合物组成和功能的研究[D];江南大学;2006年
2 李凤新;虎杖提取物抗病毒物质基础、药理作用及代谢研究[D];吉林大学;2009年
相关硕士学位论文 前10条
1 马红玉;蒽醌类成分的体内外检测研究[D];贵州大学;2015年
2 李勇;2-叔戊基蒽醌的合成与分析[D];湘潭大学;2015年
3 关超阳;蒽醌加氢和蒽醌降解物再生催化剂制备及性能研究[D];北京化工大学;2016年
4 何志远;蒽醌加氢反应钯基催化剂的研究[D];天津大学;2015年
5 陈华玉;1-硝基蒽醌制备1-氨基蒽醌新工艺[D];大连理工大学;2016年
6 刘娇娇;化学法固定蒽醌分子的工艺研究[D];河北科技大学;2016年
7 张美丽;双氧水工作液中蒽醌含量的测定[D];武汉工程大学;2016年
8 关盛文;固体酸催化合成2-戊基蒽醌的研究[D];吉林大学;2017年
9 姚明明;基于蒽醌的给受体型荧光分子的设计合成与光电性质研究[D];吉林大学;2017年
10 湛亚琼;芦荟蒽醌的降血脂、降血糖和抑菌功能研究[D];江西农业大学;2014年
,本文编号:2330025
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2330025.html