超高分子量聚乙烯辐射效应与改性研究
[Abstract]:The ultra-high molecular weight polyethylene (UHMWPE) has the advantages of simple chemical structure, outstanding biocompatibility, corrosion resistance, abrasion resistance and comprehensive performance, and is widely applied to the fields of medical treatment, fishery, protection, engineering and the like. The UHMWPE also has some poor properties, such as low surface energy, poor creep resistance, low temperature resistance, and increased wear resistance, which limits its application in the composite and engineering fields. Therefore, it is of great significance to improve the surface properties, improve the creep resistance and wear resistance by the chemical or physical method. The radiation modification is a method for effectively changing the properties of the high-molecular material. In this paper, the radiation oxidation, grafting and cross-linking of UHMWPE are studied in detail by the radiation effect of UHMWPE, and the wettability of the surface of the UHMWPE is improved by radiation oxidation or radiation grafting. The anti-creep and wear resistance of UHMWPE were improved by radiation cross-linking, and the mechanical properties of UHMWPE were improved by co-mixed radiation-modified multi-wall carbon nanotubes (MWCNTs). The specific research contents and results are as follows: (1) The radiation oxidation of UHMWPE powder is irradiated by X-ray and electron beam (EB) in air, and the chemical structure, wettability and thermal stability of the powder after radiation irradiation are studied in detail. The effect of absorbed dose and dose rate on the structure and properties of the material was compared, and the degree of oxidative cracking was calculated. The results show that the degradation of UHMWPE powder in air is dominated by X-ray/ EB irradiation, and the absorbed dose and dose rate have a significant effect on the degree of oxidative cleavage. In addition, the degree of oxidative cracking induced by low dose rate irradiation can be estimated according to the rate of oxygen diffusion and dose rate. Although the UHMWPE powder is subjected to high-dose irradiation, the oxidative cracking is severe, but the thermal stability and the wettability change are small. The effect of simple radiation oxidation on the surface properties of UHMWPE is not great. (2) The UHMWPE powder/ film pre-radiation grafted acrylic acid (AA) was grafted with a pre-radiation grafting method, and the X-ray irradiated UHMWPE powder/ film was reacted in a 1 wt% AA solution, and a small amount of AA was grafted to improve its hydrophilicity. The chemical structure and surface wettability of UHMWPE powder/ film under X-ray irradiation, grafting AA, sodium hydroxide (NaOH) and post-treatment were studied in detail. The results show that the surface of UHMWPE powder/ film is grafted with AA, and the powder sample is more beneficial to the grafting reaction, and the surface wettability of the sample after the grafting of a small amount of AA is obviously improved, and the wettability is further improved in the neutralization treatment. The powder sample of 6 wt% AA was grafted and dispersed in an aqueous solution after neutralization with NaOH to show good hydrophilicity. Finally, a hydrophilic UHMWPE powder was prepared by grafting a small amount of AA. (3) The cross-linked UHMWPE sheet was prepared by X-ray irradiation and vacuum annealing, and the changes of gel content, crystallinity, creep and mechanical properties of the cross-linked UHMWPE were studied in detail. The results show that the gel content, crystallinity, creep resistance and mechanical properties of UHMWPE sheet after radiation cross-linking are improved greatly, and the mechanical properties are improved obviously. The 300 kGy radiation cross-linked UHMWPE sheet is still in good shape after being stretched for 4 h under the condition of 270 掳 C and 0. 06MPa. The Young's modulus is also increased to 1400 MPa from the original UHMWPE sheet to 1400 MPa, and the increase is close to 250%. in addition, that increase of the degree of cross-linking of the anneal treatment facilitates the creep and modulus of the sheet. Finally, UHMWPE plates with good creep resistance were prepared by radiation crosslinking. (4) The friction behavior of UHMWPE/ X-UHMWPE composites was investigated by radiation cross-linking and blending. The composite materials were prepared by adding cross-linked UHMWPE (X-UHMWPE) to conventional UHMWPE, and the properties of the X-UHMWPE and the friction behavior of the composites were studied in detail. The results show that after the radiation cross-linking of UHMWPE powder, the processing property is decreased, and the sample with high dose irradiation is difficult to melt; a small amount of X-UHMWPE is added to the UHMWPE, so that the comprehensive performance of the composite material can be greatly improved, and the wear resistance is greatly improved and the ductility is maintained. such as the addition of 25 wt.% of the 150 kGy radiation cross-linked x-uhmwpe to the composite prepared in conventional uhmwpe, the wear resistance was increased by 130% and the tensile strength of 90% and the ductility of 70% were maintained with respect to the original uhmwpe. (5) The mechanical behavior of UHMWPE/ MWCNTs composite material was studied by X-ray irradiation and blending, and the MWCNTs were added to UHMWPE to prepare the composite material. The structure of MWCNTs and the change of the mechanical properties of the composite were studied in detail. The results show that the surface chemical structure of MWCNTs is changed by X-ray irradiation, the defect is increased, but the morphology is small, and the addition of small amount of radiation-modified MWCNTs can effectively improve the mechanical properties of the composite material, such as the addition of 2 wt% of the MWCNTs modified by the X-ray radiation can improve the yield strength of 20%; but it is difficult to effectively improve the thermal conductivity of the composite material by introducing a small amount of mwcnts.
【学位授予单位】:中国科学院研究生院(上海应用物理研究所)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O632.12
【相似文献】
相关期刊论文 前10条
1 刘广建,岳文贞,陈荣春;UHMWPE用于生物工程的摩擦磨损研究[J];工程塑料应用;2002年01期
2 安峰,李炳海,庞波,陈业军,王隆;UHMWPE改性PP共混物的力学性能[J];塑料;2003年06期
3 吕生华,王结良,何洋,梁国正,陈成泗;UHMWPE纤维高强度绳索的研究[J];工程塑料应用;2003年06期
4 庄兴民,张慧萍,晏雄;UHMWPE/PE复合材料的开发与性能研究[J];玻璃钢/复合材料;2004年01期
5 黄学祥;韩勇;严为群;王德禧;;UHMWPE的近熔点挤出技术及制品性能与应用[J];工程塑料应用;2006年11期
6 沈烈;;PREPARATION OF MICROPOROUS ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) BY THERMALLY INDUCED PHASE SEPARATION OF A UHMWPE/LIQUID PARAFFIN MIXTURE[J];Chinese Journal of Polymer Science;2008年06期
7 张炜;麦永懿;唐颂超;吴向阳;张玉梅;洪尉;;UHMWPE/PP共混改性体系研究(Ⅰ)[J];塑料;2008年05期
8 张炜;洪尉;夏晋程;沈贤婷;吴向阳;麦永懿;;UHMWPE/PP/PP基无机填料母粒复合材料的制备及表征[J];工程塑料应用;2010年06期
9 ;宁波大成UHMWPE纤维产业化[J];精细化工原料及中间体;2012年07期
10 ;我国掌握UHMWPE干法成套技术[J];石油化工应用;2013年09期
相关会议论文 前10条
1 董丽杰;陈涛;熊传溪;;填料填充UHMWPE的耐热降磨研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
2 王磊;闵明华;石建高;刘永利;陈晓蕾;乐国义;龚剑彬;;UHMWPE纤维研发与生产现状[A];中国海洋学会2013年学术年会第14分会场海洋装备与海洋开发保障技术发展研讨会论文集[C];2013年
3 Yang Wang;Ning-Ning Wu;Yu-Qin Mou;Liang Chen;Zhong-Liang Deng;;Inhibitory effects of recombinant IL-4 and recombinant IL-13 on UHMWPE-induced bone destruction in the murine air pouch model[A];中华医学会第五次中青年骨质疏松和骨矿盐疾病学术会议论文集[C];2013年
4 赵忠华;吴冬莉;薛平;何亚东;;UHMWPE微孔隔板结构的测试与分形模型研究[A];2002年中国工程塑料加工应用技术研讨会论文集[C];2002年
5 刘秧生;高万振;;UHMWPE材料制备技术及其摩擦学应用[A];第二届全国工业摩擦学大会暨第七届全国青年摩擦学学术会议会议论文集[C];2004年
6 沈艳秋;张德坤;王庆良;;UHMWPE/BHA复合材料的生物摩擦性能研究[A];2006全国摩擦学学术会议论文集(一)[C];2006年
7 ;Study on Resin Matrix in UHMWPE Fibers Protective Composites[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
8 姚仲梁;陈勇;李猛;姚嗣佳;严为群;王德禧;;分子量250万以上UHMWPE管材、板材的产业化开发[A];2008双(多)金属复合管/板材生产技术开发与应用学术研讨会文集[C];2008年
9 陈雾;金永亮;段海涛;顾卡丽;;UHMWPE温度-时间效应的分子动力学模拟[A];第十一届全国摩擦学大会论文集[C];2013年
10 于俊荣;胡祖明;刘兆峰;;UHMWPE/纳米SiO_2溶液的制备[A];2004年全国高分子材料科学与工程研讨会论文集[C];2004年
相关重要报纸文章 前8条
1 陶炎;我掌握UHMWPE干法成套技术[N];中国化工报;2013年
2 记者 仇国贤 通讯员 黄安平;5000吨UHMWPE工艺包通过评审[N];中国化工报;2014年
3 主持人 梁枫;自主创新迫使洋货降价[N];中国纺织报;2011年
4 王永军;超高分子量聚乙烯开发成功[N];中国石化报;2012年
5 毕家立;超高分子量聚乙烯加工改性热点[N];中国化工报;2003年
6 ;超高分子量聚乙烯管材生产技术及装备[N];中国化工报;2003年
7 刘云;华锦超高分子量聚乙烯纤维项目市场前景巨大[N];盘锦日报;2008年
8 王永军;第三代高性能纤维树脂赶超国外[N];中国化工报;2012年
相关博士学位论文 前10条
1 熊磊;纳米填充与辐照交联UHMWPE的力学及摩擦学性能研究[D];南京理工大学;2011年
2 张海琛;基于拉伸流变的UHMWPE熔融挤出过程及其结构与性能研究[D];华南理工大学;2016年
3 王洪龙;超高分子量聚乙烯辐射效应与改性研究[D];中国科学院研究生院(上海应用物理研究所);2017年
4 龚国芳;UHMWPE/Kaolin复合材料的摩擦磨损特性和机理研究[D];中国矿业大学(北京);2005年
5 秦襄培;基于数字化技术的UHMWPE材料摩擦学特性研究[D];机械科学研究总院;2006年
6 时晓梅;UHMWPE/HA梯度复合髋臼材料的制备及性能研究[D];大连理工大学;2013年
7 刘功德;超高分子量聚乙烯的加工与高性能化研究[D];四川大学;2003年
8 倪自丰;超高分子量聚乙烯的抗氧化处理及其生物摩擦学行为研究[D];中国矿业大学;2009年
9 康学勤;超高分子量聚乙烯的氧化降解机理及其生物摩擦学研究[D];中国矿业大学;2014年
10 王小俊;超高分子量聚乙烯的流变行为及其在材料加工中的应用[D];华南理工大学;2010年
相关硕士学位论文 前10条
1 张迪;超高分子量聚乙烯(UHMWPE)复合材料的成分组织与性能研究[D];长春理工大学;2010年
2 陈涛;UHMWPE耐热降磨改性研究[D];武汉理工大学;2005年
3 明艳;UHMWPE/PP的共混改性研究[D];华北工学院;2003年
4 侯文潭;UHMWPE塑烧板基板成型过程的数值模拟及其制备工艺研究[D];中南大学;2012年
5 刘阳;临床相关的微米级载阿仑膦酸钠超高分子量聚乙烯磨屑的研究[D];西南交通大学;2015年
6 刘红利;高强多孔UHMWPE纤维成型工艺与结构性能研究[D];郑州大学;2015年
7 顾静;UHMWPE纤维性能及其应用研究[D];苏州大学;2015年
8 韦越;隔离结构CB/PP/UHMWPE复合材料的电性能及外场响应性能研究[D];郑州大学;2015年
9 顾隽;UHMWPE纤维树脂复合材料的研究[D];上海交通大学;2011年
10 张高峰;人工膝关节材料界面间的生物摩擦学研究[D];中国矿业大学;2015年
,本文编号:2365029
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2365029.html