当前位置:主页 > 科技论文 > 化学论文 >

金属有机膦酸化合物和高分子材料质子导电性质的研究

发布时间:2018-12-08 21:04
【摘要】:质子交换膜燃料电池是燃料电池的一种,它的电解质材料由质子交换膜组成。这类电池的电解质材料直接决定了电池性能,拥有高导电率和高稳定性的质子交换膜能够制备性能优异的燃料电池。目前采用的材料体系主要分为聚合物和金属有机骨架化合物两类,它们各有优缺点。聚合物往往拥有很好的柔软度,化学稳定性以及可加工性,但是却有制作成本高昂,易水解等缺点。金属有机骨架化合物具有良好的结晶度、规则排列的空隙、可修饰的孔道等特点,但在成膜方面却是一个难题。基于以上描述的情况,人们考虑将二者杂化,从而产生能够融合二者优点的新材料,这就是混合基质膜。本文中我们首先按照已报道的CoCa·nH2O化合物的合成方法制备了系列化合物CoMg · nH2O、CoSr · 2H20和CoBa。其中CoMg·nH20导电率最高,被选中作为掺杂的化合物。同时,CoCa·nH20和CoMg · nH20是同构的,所以CoCa · nH20也被选取做对比。CoCa·nH20和CoMg·nH20被掺杂进Nafion、PVP、PVA和PEG几个高分子中,制备混合基质膜并进行质子导电性质的测量和分析。为了更好的融合样品,本文采用的化合物为层状物,杂化的方法采用浇铸法。具体内容如下:采用和CoCa ·nH20类似的实验方法,制备CoMg·nH2O、CoSr·2H2O和CoBa化合物。然后使用压片模具,将多晶粉末压制成样品片,使用金胶和金线将样品连接到样品夹具上,采用四电极法测量阻抗谱。测试结果表明,由于Mg2+具有更高的Lewis酸性,与Mg2+离子配位的水分子被很好的活化了,有效提高了材料中质子载流子的浓度。并且CoCa · nH20和CoMg · nH2O都拥有很高的活化能,使得ClO4-能够转动,促进质子传导。将CoCa · nH20和CoMg · nH2O按照一定质量比分别加入一定量Nafion中,超声分散混合,然后用吸管吸取分散溶液滴在基底片上,等待溶液铺开并且溶剂挥发干,再滴加,如此反复即成膜。制备的膜按照先前的描述制成测试样品进行导电测试。然后,选取PVP和PVA与等量的CoCa·nH2O融合并制备成膜(融合与制备方法同上)测试质子导电性。由于PEG成膜后非常脆,故超声完毕后选取压片方式成膜,而不采用浇铸法,其余步骤一样。结果表明,对于Nafion,配合物组分的比例越低,复合材料的导电性质越接近纯Nafion的导电性质。当配合物组分与Nafion的质量比为0.5:1时,CoMg复合材料的导电性能仅略高于CoMg·nH2O纯样。而CoCa复合材料的导电性能却比CoMg·nH2O纯样提升一个数量级。在CoCa·nH2O与不同高分子基质复合的体系中,CoCa@PEG具有最优的质子导电性能。
[Abstract]:Proton exchange membrane fuel cell is a kind of fuel cell, its electrolyte material is made up of proton exchange membrane. The electrolyte material of this kind of battery directly determines the performance of the battery. Proton exchange membrane with high conductivity and high stability can be used to prepare fuel cell with excellent performance. At present, the material systems are mainly divided into polymer and organometallic skeleton compounds, which have their own advantages and disadvantages. Polymers often have good softness, chemical stability and processability, but they have the disadvantages of high cost and easy hydrolysis. Organometallic skeleton compounds have good crystallinity, regular arrangement of voids and modifiable pores, but they are a difficult problem in film formation. Based on the situation described above, hybrid materials are considered to produce new materials which can integrate the advantages of the two materials, which is called mixed matrix membrane. In this paper, we first prepared a series of CoMg nH2O,CoSr 2H20 and CoBa. compounds according to the reported synthesis method of CoCa nH2O compounds. Among them, CoMg nH20 has the highest conductivity and is chosen as the doped compound. At the same time, CoCa nH20 and CoMg nH20 are isomorphic, so CoCa nH20 is also selected for comparison. CoCa nH20 and CoMg nH20 are doped into Nafion,PVP,PVA and PEG to prepare the mixed matrix membrane and the proton conductivity is measured and analyzed. In order to better fuse the sample, the compound used in this paper is laminar, and the hybrid method is cast. The main contents are as follows: CoMg nH2O,CoSr 2H2O and CoBa compounds were prepared by using the same experimental method as CoCa nH20. Then the polycrystalline powder was pressed into a sample sheet by pressing the die, and the sample was connected to the sample fixture by gold glue and gold wire, and the impedance spectrum was measured by four-electrode method. The results show that because of the higher Lewis acidity of Mg2, the water molecules coordinated with Mg2 ions are well activated, which effectively increases the concentration of proton carriers in the materials. And both CoCa nH20 and CoMg nH2O have high activation energies, enabling ClO4- to rotate and promote proton conduction. The CoCa nH20 and CoMg nH2O were added to a certain amount of Nafion according to certain mass ratio, then the ultrasonic dispersion was mixed, then the dispersed solution was dripped on the substrate with a suction tube, waiting for the solution to spread out and the solvent volatilized dry, then the film was formed again and again. The prepared films were prepared to test the electrical conductivity of the samples as described earlier. Then, the PVP and PVA were selected to fuse with the same amount of CoCa nH2O and the film was prepared (fusion and preparation method was used above) to test the proton conductivity. Because PEG is very brittle after film forming, the pressing method is chosen after ultrasonic forming, and the other steps are the same. The results show that the lower the proportion of Nafion, complex is, the closer the conductive properties of the composites are to those of pure Nafion. When the mass ratio of the complexes to Nafion is 0.5: 1, the electrical conductivity of the CoMg composites is only slightly higher than that of the pure CoMg nH2O samples. The conductivity of CoCa composites is one order of magnitude higher than that of CoMg nH2O. In the system of CoCa nH2O and different polymer matrix, CoCa@PEG has the best proton conductivity.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O627.51;O631.23

【相似文献】

相关期刊论文 前10条

1 范小林,朱敏,张熊禄,练萍,薛君;单分子导电性质的研究进展[J];赣南师范学院学报;2005年03期

2 В.П.帕诺夫;Г.Д.帕诺娃;B.T.卡西扬;B.C.哈尔拉莫夫;邓庆球;;关于氧化铁矿石矿物导电性的长时张弛问题[J];国外金属矿山;1993年12期

3 王琛,范小林,刘宇宏,万立骏,白春礼;单分子导电性质的研究进展(英文)[J];物理化学学报;2004年S1期

4 李卓棠;稀土氧化物的导电性质[J];稀土;1982年03期

5 曹蓉江;岩石、炉渣、非整比无机材料的结构及导电性质[J];稀有金属;1987年05期

6 朱树新;;导电性高分子材料[J];仪表材料;1980年03期

7 吴承伟,HansConrad,郭杏林;电流变体单链的轴向应变对导电性质的影响[J];大连理工大学学报;1997年05期

8 杨正银;王流芳;吴集贵;杨科武;祝英;;3d过渡金属的2-羰基丙酸(4-吡啶甲酰基)腙配合物的合成、表征及导电性质研究[J];化学学报;1993年02期

9 董相廷,,郭奕柱,于德才,洪广言,肖军;超微LaMnO_3的合成与导电性研究[J];稀有金属材料与工程;1994年02期

10 刘宏建,李莉萍,王一峰,苏文辉;常压烧结和高压合成Nd_(2-x)Ce_xCuO_4的结构特征与导电性质[J];高压物理学报;1991年03期

相关博士学位论文 前1条

1 朱骏;铝用碳阴极导电性与钠—电解质渗透耦合机制研究[D];北京科技大学;2015年

相关硕士学位论文 前8条

1 胡效鹏;基于磺酸、磷酸修饰的芳香多羧酸配体构筑金属有机框架材料的合成和质子导电性质的研究[D];郑州大学;2016年

2 王云霞;苯环共价功能化碳纳米管电性和输运性质的理论研究[D];哈尔滨理工大学;2016年

3 沈洋;金属有机膦酸化合物和高分子材料质子导电性质的研究[D];南京大学;2017年

4 刘超峰;钇稳定氧化锆—硅酸镧复合氧离子导体的制备、导电性及相关机理[D];中南大学;2011年

5 吴永晟;(BEDT-TTF)(FeBr_4)晶体的制备及其物理性质的研究[D];中国科学技术大学;2011年

6 冯善高;炼焦煤的荧光和导电性对焦炭性能影响的研究[D];辽宁科技大学;2015年

7 曾承露;基于吡嗪基团的导电化合物分子设计及其导电性质的理论研究[D];西南大学;2011年

8 史华锋;聚苯胺及其衍生物/无机物复合材料制备及其导电性研究[D];西北师范大学;2009年



本文编号:2368997

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2368997.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f9974***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com