当前位置:主页 > 科技论文 > 化学论文 >

三维Ni-Co羟基氧化物电极材料的原位活化及其性能研究

发布时间:2018-12-12 21:28
【摘要】:生长于柔韧基底上的三维纳米结构阵列电极在柔性电子元件的应用上显示出极大的潜力。本论文设计制备了一系列生长于碳布上的Ni-Co基氢氧化物纳米材料,并对其电容行为进行了研究。同时,考虑到Ni-Co基化合物在电催化领域的优秀表现,我们也对所合成的纳米阵列电极催化析氧反应的行为进行了探讨。首先,研究了制备高性能电极的Ni-Co氢氧化物阵列的原位转化过程。通过常用的水热手段得到在碳布上生长的Ni-Co碱式碳酸盐纳米针状阵列,其在碱液中浸泡后逐渐转变为Ni-Co羟基氧化物纳米线支撑的纳米片阵列。随着浸泡时间的增加,在1 mA·cm-2的电流密度下其容量从281 mF·cm-2显著增加到3900 mF·cm-2。并且库伦效率也可达到了100%。这种纳米线支撑纳米薄片阵列具有通畅的传质通道、大的比表面积为电解液离子的扩散和表面接触提供便利,同时其三维结构稳定性高,保证了电极具有很好的电容性能。此外,由相应电极片组装的不对称电容器在碱液中浸泡24 h后面积比电容也有增加。其次,讨论了不同Ni/Co摩尔比对电极原位转化效果的影响。发现改变Ni和Co组分的相对含量对电化学性能有明显影响。当Ni/Co= 1.5:1时,电极材料的性能最优。在6 mol·L-1 KOH中,2.0 mA·cm-2的电流密度下电容由初始的1987.6 mF·cm-2增大到4543.8 mF·cm-2。从样品浸泡前后的阻抗谱,以及单组分碱式碳酸盐的形貌变化,可以判断Co和Ni组分在形貌及电化学性能中的作用。Ni-Co碱式碳酸盐阵列纳米针阵列的形成是Co化合物的生长习惯所致,而纳米针向纳米薄片的转变是由于Ni氢氧化物的生长趋势所诱导,Co组分对浸泡过程的电容值变化影响较大。Ni组分可改善电极导电能力。最后,碳布可以作为柔性基底,形成高催化活性的OER电极。通过水热法在碳布上生长Ni-Co-Fe碱式碳酸盐纳米针阵列电极,实验结果表明,初始的Ni-Co-Fe/CC碳酸盐电极在10 mA·cm-2的电流密度下的过电势为402 mV,有最小的Tafel斜率为72 mV·dec-1,而在6 mol·L-1 KOH的溶液中浸泡10h后η10最小,为340mV。
[Abstract]:Three-dimensional nanostructured array electrodes grown on flexible substrates show great potential in the application of flexible electronic components. In this paper, a series of Ni-Co based hydroxide nanomaterials grown on carbon cloth have been designed and prepared, and their capacitance behavior has been studied. At the same time, considering the excellent performance of Ni-Co based compounds in the field of electrocatalysis, we also discussed the behavior of the synthesized nanoscale array electrodes for catalytic oxygen evolution. Firstly, the in situ conversion of Ni-Co hydroxide arrays with high performance electrodes was studied. The Ni-Co basic carbonate nanowire arrays grown on carbon cloth were prepared by hydrothermal method. After soaking in alkali solution, they were gradually transformed into Ni-Co hydroxyl oxide nanowires supported by nanowires. With the increase of soaking time, its capacity increased significantly from 281 mF cm-2 to 3900 mF cm-2. at 1 mA cm-2 current density. And Coulomb efficiency can also reach 100. The nanowire supported nanoscale array has a smooth mass transfer channel and a large specific surface area to facilitate the diffusion and surface contact of electrolyte ions. At the same time, the three-dimensional structure stability of the nanowire array is high, which ensures the electrode has good capacitance performance. In addition, the area specific capacitance of the asymmetric capacitor assembled by the corresponding electrode sheet increased after immersion in the alkaline solution for 24 hours. Secondly, the effect of different molar ratio of Ni/Co on in situ conversion of the electrode was discussed. It is found that changing the relative content of Ni and Co has a significant effect on the electrochemical performance. When Ni/Co= is 1.5: 1, the electrode material has the best performance. In 6 mol L-1 KOH, the capacitance of 2.0 mA cm-2 increased from 1987.6 mF cm-2 to 4543.8 mF cm-2. at current density. From the impedance spectrum of the sample before and after soaking, as well as the morphology change of the one-component basic carbonate, The effects of Co and Ni components on morphology and electrochemical properties can be judged. The formation of Ni-Co basic carbonate array nano-needle arrays is due to the growth habits of Co compounds. However, the transition from nano-needle to nanoscale is induced by the growth trend of Ni hydroxide, and the Co component has a great effect on the change of capacitance during soaking. The Ni component can improve the conductivity of the electrode. Finally, carbon cloth can be used as a flexible substrate to form OER electrode with high catalytic activity. Ni-Co-Fe basic carbonate nano-needle array electrodes were grown on carbon cloth by hydrothermal method. The experimental results show that the initial Ni-Co-Fe/CC carbonate electrode has an overpotential of 402 mV, at 10 mA cm-2 current density. The smallest Tafel slope was 72 mV dec-1, and the minimum 畏 10 was 340 MV after immersion in 6 mol L-1 KOH solution for 10 h.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O646;TB383.1

【相似文献】

相关期刊论文 前10条

1 M.Ding,B.H.W.S.de Jong,S.J.B.Niessen,J.P.M.van der Meer,V.J.van Hinsberg;“黑色”非晶形三价铁羟基氧化物及其对有害物质的吸附(英文)[J];地球化学;2005年01期

2 胡清源;谭庆军;侯宏卫;唐纲岭;;负载型羟基氧化物的电催化性能研究进展[J];科技导报;2012年13期

3 郑文君,徐翊华,庞文琴;K_3Sb_(0.3)Y_4O_8·6H_2O新型低温相的水热合成与表征[J];高等学校化学学报;1997年12期

4 李博;Ni-Co固溶体合金价电子结构分析——Co在合金中作用的初步探讨[J];东北工学院学报;1986年03期

5 张国英,苏杰,钱存富,李荣,曾梅光;Co对高Ni-Co二次硬化钢微结构影响的穆斯堡尔谱研究[J];钢铁研究学报;2001年06期

6 赵春霞;孙哲;刘白玲;;改性双羟基氧化物对P(BA-VAc)力学性能及热性能的影响[J];高分子材料科学与工程;2013年03期

7 李阔;王颖霞;苏婕;林建华;;半水榴石型化合物Sr_6Sb_4M_3O_(14)(OH)_(10)(M=Co,Mn)的合成、结构与性质[J];物理化学学报;2010年07期

8 李青;吴尧;吴江;;精密模具电铸Ni-Co工艺的研究[J];功能材料;1993年05期

9 李仲平;;结晶器Ni-Co镀层失效分析与工艺研究[J];机械管理开发;2012年05期

10 耿哲;刘阳;张宏杰;李曙;;结晶器铜板Ni-Co电镀层的耐磨性[J];中国表面工程;2013年06期

相关会议论文 前1条

1 张菊生;;交替电沉积Ni-S-Co、Ni-Co、Ni-Mo-Co于泡沫Ni-基阴极上降低析氢过电位[A];第十届中国科协年会论文集(二)[C];2008年

相关博士学位论文 前10条

1 黎作鹏;体域纳米网络关键技术研究[D];哈尔滨工程大学;2014年

2 张正飞;一维氧化钨纳米材料无催化剂生长的原位透射电镜研究[D];浙江大学;2017年

3 刘敬东;铜纳米颗粒合成及其低温烧结互连行为研究[D];哈尔滨工业大学;2017年

4 秦毓辰;铂/金基新型纳米结构催化剂的水热和微波合成及电催化性能研究[D];中国石油大学(北京);2016年

5 刘旭松;锗基纳米材料的制备及其电化学性能研究[D];哈尔滨工业大学;2017年

6 谷志远;基于纳米线的光学微腔和纳米激光器[D];哈尔滨工业大学;2016年

7 潘金彬;生物活性蛋白导向简易构建新型高效安全的纳米探针用于肿瘤的诊疗[D];天津医科大学;2017年

8 戴清源;基于乳清分离蛋白修饰的低环境敏感型纳米颗粒构建与稳定机制[D];江南大学;2017年

9 刘洋;多功能纳米胶束体系联合声动力与化疗靶向治疗肝癌的研究[D];天津医科大学;2017年

10 程羽佳;微、纳米ZnO/LDPE复合材料结构形态与介电性能研究[D];哈尔滨理工大学;2017年

相关硕士学位论文 前10条

1 郑晓宇;三维Ni-Co羟基氧化物电极材料的原位活化及其性能研究[D];广西大学;2017年

2 周旭东;ⅢA族羟基氧化物的制备及高压研究[D];吉林大学;2017年

3 姚思雨;钼掺杂的铁钴三元羟基氧化物的合成及电催化性能研究[D];北京交通大学;2017年

4 张慧财;无氧条件下Fe(Ⅱ)对铁黄催化相转化研究[D];河北师范大学;2012年

5 谢少文;纳米多级孔Pd-HSiO_(1.5)/Ni-Co复合电极的制备及在四环素类抗生素检测中的应用[D];湖南工业大学;2017年

6 黄武;钛基Ni,Ni-Co,Ni-Sn电极的制备及其电催化活性的研究[D];湖南科技大学;2008年

7 杨秀娟;金纳米簇的合成与性质的研究[D];长春理工大学;2017年

8 孙怡文;铜锌锡硫纳米结构的制备、相变与光电性能研究[D];合肥工业大学;2017年

9 朱笑天;金纳米棒的制备与修饰及其在环境污染物检测中的应用[D];郑州大学;2017年

10 任雪利;纳米气泡对污染物的吸附及其影响因素探究[D];上海师范大学;2017年



本文编号:2375273

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2375273.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99abf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com