分等级结构对锡氧化物负载Pt室温催化甲醛氧化性能的影响(英文)
[Abstract]:Formaldehyde is the main indoor air pollutant. The commonly used formaldehyde removal technologies include physical and chemical adsorption, photocatalytic decomposition and thermal catalytic oxidation, among which the catalytic oxidation at room temperature has the most development and practical prospects. The catalysts that can efficiently catalyze the complete oxidation of formaldehyde at room temperature are supported noble metals such as platinum (Pt), palladium gold silver and so on. In addition to the selection of components with high intrinsic activity, the catalytic decomposition activity of formaldehyde can also be improved by increasing the dispersion of precious metals, enhancing the interaction between noble metals and carriers, and increasing the formaldehyde affinity of the support. The above methods mainly focus on the improvement of the chemical properties of the catalyst, on the other hand, the microstructure of the catalyst and the speed of mass transfer also have an important effect on the apparent catalytic reaction rate. Recent studies have shown that the hierarchical structure is conducive to the diffusion and transport of reactants in the pores of the materials and can greatly improve the catalytic activity. Therefore, Pt nanoparticles supported on flower-like tin oxide (SnO_x) with hierarchical structure were prepared and their catalytic decomposition of formaldehyde at room temperature was studied. The flower-like SnO_x was prepared by hydrothermal method from stannous fluoride and urea, and the Pt/SnO_x catalyst was prepared by impregnation and sodium borohydride reduction method. In addition, SnO_x was milled to destroy its grading structure, and g-SnO_x and Pt/g-SnO_x were prepared as control. Observed by field emission scanning electron microscope, the tin oxide is a flower-like microsphere with graded structure, and its diameter is about 1 渭 m. The X-ray diffraction (XRD) spectra correspond to tetragonal stannous oxide (SnO,JCPDS 06-0395), but tetragonal rutile tin oxide (SnO_2,) is also observed. The weak characteristic peak of JCPDS 41-1445). The lattice stripes of tetragonal SnO were observed only by high resolution transmission electron microscopy (HRTEM). According to the results of X-ray photoelectron spectroscopy (XPS), the oxidation state of tin is tetravalent on the surface of flower-like tin oxide. The results of the above characterization indicate that the main body of tin oxide prepared is SnO, which contains a small amount of SnO_2. because the surface is oxidized by air. The Pt nanoparticles with diameter 2-3 nm were found to be highly dispersed on the surface of SnO_x nanoparticles by transmission electron microscopy (TEM), and the XPS results showed that the valence state of Pt in the nanoparticles was zero, which was consistent with that observed by HRTEM. A static test system was used to test the decomposition of formaldehyde. After adding a certain concentration of formaldehyde into the test box of 6 L volume, the concentration of formaldehyde, carbon dioxide (CO_2) and carbon monoxide (CO) were monitored over time. The results showed that the flower-like SnO_x had no catalytic activity for formaldehyde oxidation at room temperature, and only a small amount of formaldehyde could be removed by adsorption. However, after loading 0 valent metal Pt nanoparticles, formaldehyde rapidly decomposed into CO_2 and water, and no CO was formed. Under the initial concentration of 170 ppm, the formaldehyde removal rate reached the high activity of 87%.Pt/SnO_x catalyst after 1 h reaction. The results showed that the metal Pt was the active component of formaldehyde oxidation. The catalytic activity of Pt/g-SnO_x, prepared by ball milling is much lower than that of Pt/SnO_x; with graded structure. The second order reaction rate constant of the latter is 5.6 times of that of the former, which proves that the hierarchical structure can accelerate the catalytic oxidation decomposition of formaldehyde effectively. The results of this study provide a new guiding idea for the design and preparation of efficiently decomposing indoor formaldehyde materials.
【作者单位】: 武汉理工大学材料复合新技术国家重点实验室;东华理工大学放射性地质与勘探技术国防重点学科实验室;沙特阿卜杜勒阿齐兹国王大学科学部物理系;
【基金】:supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007) the National Basic Research Program of China (973 program, 2013CB632402) the Natural Science Foundation of Hubei Province (2015CFA001) the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034) Innovative Research Funds of SKLWUT (2015-ZD-1)~~
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 张博;梁新义;;Pt基纳米粒子在直接甲醇燃料电池应用展望[J];电源技术;2014年01期
2 王金质;电感耦合等离子发射光谱法测定Pt/Al_2O_3催化剂中的Pt[J];化学工业与工程技术;2005年04期
3 戴兢陶;杜玉扣;狄国庆;华南平;杨平;;Pt_3Co核-Pt壳型纳米粒子的制备及磁性[J];无机化学学报;2006年10期
4 常志向,孙逢铎;粘合剂和钡对Pt/L催化剂性能的影响[J];工业催化;1995年04期
5 王宗花;史国玉;夏建飞;张菲菲;夏延致;李延辉;夏临华;;直接甲醇燃料电池Pt基阳极催化剂的研究进展[J];化学学报;2013年09期
6 姚淑娟;邵鑫;崔守鑫;赵建伟;周成冈;;Pt原子在γ-Al_2O_3(001)表面的吸附及迁移[J];物理化学学报;2011年08期
7 刘正乾;马军;赵雷;;载Pt石墨催化臭氧化降解水中草酸的研究[J];环境科学;2007年06期
8 张玉梅;刘梅;张伟;李海波;;Pt原子百分含量对FePt合金薄膜结构的影响[J];吉林师范大学学报(自然科学版);2008年01期
9 黄昆,陈景;Pt族金属在加压氰化浸出过程中的行为探讨[J];金属学报;2004年03期
10 马现刚;徐恒泳;李文钊;;Pt/γ-Al_2O_3催化剂催化微晶纤维素转化[J];石油化工;2008年05期
相关会议论文 前10条
1 林建强;;PT新实践——水中运动疗法[A];2013浙江省物理医学与康复学学术年会暨第八届浙江省康复医学发展论坛论文集[C];2013年
2 杜鹃;巢亚军;原鲜霞;章冬云;马紫峰;;直接甲醇燃料电池Pt/炭气凝胶电催化剂的合成、表征和性能[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年
3 娄玉行;魏春景;;西大别红安蓝闪石榴辉岩变质条件及PT轨迹初探[A];2006年全国岩石学与地球动力学研讨会论文摘要集[C];2006年
4 黄仙明;;220kV母线PT二次空开跳闸原因分析及防范措施[A];全国火电大机组(300MW级)竞赛第38届年会论文集[C];2009年
5 孙诗;牟鑫;刘叔娟;赵强;黄维;;重金属Pt(Ⅱ)配合物激发态性质的理论研究[A];全国第八届有机固体电子过程暨华人有机光电功能材料学术讨论会摘要集[C];2010年
6 孙振宇;赵燕飞;张宏晔;刘志敏;;超声法制备Pt/碳纳米管高效纳米催化材料研究[A];中国化学会第27届学术年会第01分会场摘要集[C];2010年
7 刘军;杨毅夫;邵惠霞;陈卫华;熊跃;高峰;;一种新型Pt/碳纤维超微盘电极的制备[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年
8 温国栋;徐云鹏;马怀军;杨晓梅;曲伟;徐竹生;田志坚;;Pt/C催化剂催化生物质及其衍生物水相重整制氢[A];第十三届全国催化学术会议论文集[C];2006年
9 骆鹏;卫辰;段磊;朱涛;侯启明;;用于组分疫苗生产的百日咳PT基因工程菌的鉴定[A];2013年中国药学大会暨第十三届中国药师周论文集[C];2013年
10 欧阳明鉴;;大中型水轮发电机出口回路PT选型的探讨[A];2013年电气学术交流会议论文集[C];2013年
相关重要报纸文章 前10条
1 记者 盛义 实习记者 王平;广东福地重组PT红光[N];中国证券报;2000年
2 记者 李蔚;PT红光剥离债务2.5亿元[N];中国证券报;2001年
3 记者 吴铭;PT凯地资产重组前期工作就绪[N];中国证券报;2001年
4 万宁;PT琼华侨 但求金山住神仙[N];中国证券报;2002年
5 记者 义敏;PT红光资产置换重塑主业[N];中国证券报;2001年
6 记者 姚备;PT双鹿公布股东会法律意见[N];中国证券报;2000年
7 记者 周松林;PT农商社退回母公司“优质资产”[N];中国证券报;2000年
8 记者 何凌枫;PT农商社大股东将施援手[N];中国证券报;2001年
9 记者 陈赋斌;三家PT公司披露重组进展[N];中国证券报;2001年
10 翁;PT红光净资产仍为负值[N];中国证券报;2001年
相关博士学位论文 前5条
1 峥嵘;虎榛子促进油松菌根形成及外生菌根真菌PT基因功能分析[D];内蒙古农业大学;2015年
2 郭志华;关于量子关联性与PT-对称量子理论的研究[D];陕西师范大学;2013年
3 陈卫;不同聚集态Pt纳米粒子的合成、表面组装及其电化学和特殊红外性能研究[D];厦门大学;2003年
4 白福全;过渡金属配合物激发态和光谱性质的量子理论研究:Pt配合物[D];吉林大学;2009年
5 李军;丙烷脱氢用Pt纳米催化剂的制备、表征及其催化性能研究[D];中国海洋大学;2014年
相关硕士学位论文 前10条
1 吴凯;新型铂类化合物Pt(0506)101的抗胃癌作用及其机制研究[D];浙江大学;2015年
2 蔚停停;光孤子在PT对称晶格势垒中的动力学特性分析[D];哈尔滨工业大学;2015年
3 陈海龙;石墨烯担载直接甲醇燃料电池Pt基二元催化剂的制备和表征[D];哈尔滨工业大学;2015年
4 刘骏;超细Pt纳米枝晶材料的可控制备及其多功能性能研究[D];上海大学;2015年
5 罗雪梅;Pt基催化剂的制备及在甲醇电化学氧化中的应用研究[D];山西大学;2015年
6 王会慧;蒸气和机械摩擦诱导的Pt(Ⅱ)-炔配合物发光变色材料研究[D];大连理工大学;2015年
7 高艺之;无定形TiO_2修饰石墨烯载Pt电催化剂的合成及性能研究[D];北京化工大学;2015年
8 张超;纳米Pt基核壳催化剂的制备及性能研究[D];东南大学;2015年
9 雷静;不同形貌Al_2O_3负载Pt基催化剂的热稳定性及对丙烷脱氢催化性能的影响[D];华东理工大学;2016年
10 李君瑞;有序介孔材料负载Pt(-M)催化剂上液相选择加氢性能研究[D];华东师范大学;2016年
,本文编号:2391489
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2391489.html