温敏性PNIPAM-AuNPs和PNIPAM-DNA的制备及性能研究
[Abstract]:Poly (N-isopropyl acrylamide), also known as PNIPAM, is a kind of high molecular polymer with temperature sensitivity, which has a good stimulus response to temperature. At the lowest critical solution temperature (LCST), conformational transition occurs. If the temperature is below LCST, PNIPAM forms a hydrogen bond with water through the amide group, so that it can exist stably in water, and the water molecules are surrounded by hydrophobic groups, so that PNIPAM is hydrophilic. It is a free extensional state in aqueous solution. If the temperature is above LCST, the hydrogen bond breaks, and the hydrogen bond between the amide groups of PNIPAM itself is formed, which causes the internal collapse of the bond and changes from the extensional state to the spherical structure. If modified, it can broaden the research field of thermo-sensitive polymer materials and make it play a more important role in drug loading, gene transmission, chemical analysis and other fields. Based on the principle of reversible addition chain transfer polymerization (RAFT) polymerization and ethanolamine ammonolysis, PNIPAM-Au NPs complexes were prepared. The salt effects of various salt ions on PNIPAM-Au NPs complexes were studied. PNIPAM-DNA block copolymers were prepared by atom radical polymerization of (AGET ATRP) and click-chemical (Click) reaction on the basis of electron transfer activation catalyst. The LCST changes of PNIPAM-DNA copolymers induced by conformation change of DNA were studied. The main research contents are as follows: 1. Using dithiobenzoic acid (CPADB) as chain transfer agent and (AIBN) as initiator, PNIPAM-COOH, was prepared by RAFT polymerization in the solvent of N- dimethylformamide (DMF). The synthesized PNIPAM-COOH has controllable molecular weight and low molecular weight polydispersity. At the same time, PNIPAM-Br, was synthesized by AGET ATRP polymerization with ethyl bromide (EBIB) / (PMDETA) / copper bromide as initiator and ascorbic acid as reducing agent. The characterization results show that the synthesized PNIPAM-COOH and PNIPAM-Br have clear structures. 2. Based on the ammonolysis of ethanolamine, the dithioester bond at one end of PNIPAM-COOH polymer was reduced to mercapto group, and then it was grafted onto the surface of nanometer gold to prepare PNIPAM-AuNPs complex. The polymer exists stably in aqueous solution, but different salt ions have different salt effect on it. It is found that at low temperature, the polymer is affected by the charge of ions and the complex complexation with salt ions, and the effect is Hg2 Cu2 Zn2 Ni2 Pb2 Na. At high temperature, the interaction of thermal effect and salt effect makes the complex gather at very low salt ion concentration, the effect is Cu2 Pb2 Zn2 Ni2 Hg2 Na, and the complexation effect of ion is very weak. However, the effect of ion charge is still very strong, so that the effect of Cu2 and Pb2 is similar, Zn2 is less, Hg2 and Ni2 are close, and the effect of Na salt solution is still the lowest. The PNIPAM-Br terminal bromine group was replaced with azide group by sodium azide. The block copolymers of PNIPAM-DNAC and PNIPAM-DNAT were prepared by click reaction grafting DNA, with acetylene group. The results showed that the PNIPAM-DNAC and PNIPAM-DNAT block copolymers were tested at different temperatures. The transmittance of PNIPAM-DNAC in acid-base solution and PNIPAM-DNAT in the solution before and after the addition of mercuric ion was studied to study the change of LCST induced by the conformation change of DNA. The results showed that DNAC changed from single strand structure to tetrahedron structure in acid solution (pH6.0), and DNAT was hybridized into double strand by T-Hg2 T structure in the presence of mercury ion. These conformational changes resulted in the increase of negative charge on DNA. The repulsive force between chains increases the temperature range of phase transition of PNIPAM-DNA block copolymers, the change is gentle, the kinetic radius is decreased, and the transmittance of the solution is increased.
【学位授予单位】:鲁东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O633.22
【相似文献】
相关期刊论文 前10条
1 蒋彩云;钱卫平;;纳米金-PNIPAM类智能凝胶[J];化学进展;2010年08期
2 蒋彩云;翁晓磊;钱卫平;;AuNPs/PNIPAM复合颗粒的制备及其温敏性质[J];物理化学学报;2008年12期
3 杨明成;朱军;赵惠东;朱诚身;宋红艳;李坤豪;全彦君;;PNIPAM/蒙脱土复合水凝胶辐射合成与表征[J];核技术;2009年09期
4 杨明成;宋卫东;张宏娜;朱军;李召朋;朱诚身;赵惠东;;PNIPAM/碳纳米管复合水凝胶辐射合成与表征[J];核技术;2011年07期
5 ;A THEORETICAL MODEL FOR THERMAL-SENSITIVE MICROGEL WITH PNIPAM CORE AND ELASTIC SHELL[J];Acta Mechanica Solida Sinica;2012年05期
6 聂慧;刘和文;;含螺吡喃端基PNIPAM的制备及其在活细胞成像中的应用[J];功能高分子学报;2013年02期
7 李凯;张青川;刘红;伍小平;张广照;;微梁传感研究PNIPAM分子链热致折叠构象转变[J];实验力学;2006年03期
8 Jing Tao;Bang-kun Jin;Li-ying Li;Chen He;何卫东;;CLICK CYCLIZATION OF LINEAR TRIBLOCK COPOLYMERS AT BLOCK JUNCTIONS UNDER HIGH CONCENTRATION DUE TO END-BLOCK SHIELDING[J];Chinese Journal of Polymer Science;2013年07期
9 罗春华;董秋静;余丽;王彩华;崔玉民;;具有智能荧光特性的含二甲氨基查尔酮端基的PNIPAM研究[J];高分子学报;2012年11期
10 ;THERMAL-SENSITIVE BETA-CYCLODEXTRIN-CONTAINING POLY(NISOPROPYLACRYLAMIDE)HYDROGELS CROSSLINKED BY Si—O—Si BONDS—SYNTHESIS,CHARACTERIZATION AND PROLONGING IN VITRO RELEASE OF 5-FLUOROURACIL[J];Chinese Journal of Polymer Science;2005年05期
相关会议论文 前10条
1 ;Study on a thermo sensitive PNIPAM coated silica particle by light scattering[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
2 陈帅;陈旭伟;王建华;;水凝胶PNIPAM/AAc选择性分离血红蛋白的研究[A];中国化学会第27届学术年会第09分会场摘要集[C];2010年
3 朱丹;周剑锋;胡一;张琦;沈健;;Dielectric Relaxations of PNIPAM Colloidal Dispersions at the Coil-Globule Transition[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
4 崔树勋;庞祥超;;PNIPAM单链弹性的温度依赖性[A];中国化学会第28届学术年会第15分会场摘要集[C];2012年
5 崔树勋;庞祥超;;PNIPAM单链弹性的温度依赖性[A];2012年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2012年
6 崔树勋;庞祥超;王科峰;;PNIPAM单链弹性的温度和溶剂响应性[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第2分会:溶液中的聚集与分子组装[C];2013年
7 朱丹;魏涛;周剑锋;沈健;;关于PNIPAM微凝胶相转变的介电谱研究[A];中国化学会第28届学术年会第12分会场摘要集[C];2012年
8 王章薇;武培怡;;PNIPAM在离子液体中凝胶化行为的谱学研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
9 赵辉;陈宏伟;李增昌;苏伟;张其锦;;微波辅助制备PMMA为壳层PNIPAM为核的温度响应型粒子[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
10 来恒杰;武培怡;;PNIPAM与NIPPA在重水溶液中相变行为的谱学研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
相关博士学位论文 前10条
1 王健;聚丙烯酰胺类智能高分子多重环境响应的NMR研究[D];中国科学院研究生院(武汉物理与数学研究所);2016年
2 刘吕丹;复杂环境中高分子的离子特异性效应[D];中国科学技术大学;2016年
3 李丽英;基于PNIPAM的响应性高分子材料的制备及性能的研究[D];中国科学技术大学;2011年
4 赵辉;基于PNIPAM的功能化聚合物微球的设计、制备与性能研究[D];中国科学技术大学;2006年
5 丁延伟;微量量热法研究温敏大分子在溶液中的相变行为[D];中国科学技术大学;2009年
6 徐建;基于聚(N-异丙基丙烯酰胺)的多种拓扑结构水溶性高分子制备及其溶液性质研究[D];中国科学技术大学;2008年
7 刘小兵;基于PAA和PNIPAM的嵌段聚合物及微凝胶的合成及聚集研究[D];中国科学技术大学;2012年
8 刘光明;高分子链在界面上的构象行为[D];中国科学技术大学;2007年
9 罗时忠;环境敏感单分子胶束的制备及其相转变行为研究[D];中国科学技术大学;2006年
10 孙冰洁;红外及二维相关光谱方法对外扰作用下聚合物体系演化的微观动力学机理的研究[D];复旦大学;2010年
相关硕士学位论文 前10条
1 张波;特殊结构热致响应聚合物的合成及其相变机理的研究[D];复旦大学;2014年
2 牛少敏;聚N-异丙基丙烯酰胺/环糊精的温敏性研究[D];中国科学技术大学;2015年
3 邱杨;可注射型PNIPAM水凝胶的制备及性能研究[D];北京化工大学;2015年
4 付婧玉;PNIPAM/CMCS/CNTs水凝胶的制备及新型磁性复合微球研究[D];陕西师范大学;2015年
5 黄婉莹;PNIPAM50在临界相变点附近的蜷缩与膨胀过程的动力学研究[D];浙江师范大学;2015年
6 许谦;RAFT聚合合成PNIPAM-纤维素球性能研究[D];青岛大学;2015年
7 李建元;含PNIPAM链段多嵌段聚合物的合成、溶液和吸附行为研究[D];浙江大学;2016年
8 张晏宁;掺杂聚多巴胺颗粒近红外响应型智能水凝胶的研究[D];西南交通大学;2016年
9 谭鹏;PU基温敏复合材料的制备及应用研究[D];贵州大学;2016年
10 王慧丽;PNIPAM类温敏纳米复合物的合成、荧光和催化性质[D];河南师范大学;2016年
,本文编号:2395488
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2395488.html