负载型Pd-M催化剂在氯代苯酚加氢脱氯中的研究
[Abstract]:With the rapid development of the chemical industry and the agriculture, the problem of water resource pollution is becoming more and more serious, in which the water environment is very harmful to a large class of substances, namely the chlorophenols organic compounds. They can directly or indirectly harm human health. The present catalytic reduction method has the advantages of economy, high efficiency, low energy consumption, no pollution and the like in the removal of chlorophenols in water, and is a technology which is well worth studying and exploring the removal of chlorophenol compounds in water. Pd-In/ Al-Al2O3, Pd-Cu/ AC bimetallic catalyst and Pd-In-Cu/ Al-Al2O3 three-metal catalyst with Pd loading of 1% and Pd-In-Cu/ Al-Al2O3 three-metal catalyst were prepared by step-by-step impregnation and co-impregnation. Pd and In are characterized by X-ray diffraction (XRD), scanning electron microscope-X-ray dispersion energy spectrum (SEM-EDS), high-resolution transmission electron microscope (HR-TEM), X-ray electron energy spectrum (XPS), program temperature-raising reduction (TPR), and H2 pulse chemical adsorption method. The crystal structure, surface morphology, particle shape and particle size, dispersity and surface area of Cu metal particles were characterized. The reaction was carried out in a glass reactor, an aqueous solution of p-chlorophenol and a catalyst were added, the reaction was carried out with H2, and the product was analyzed by gas chromatography. The preparation methods of different catalysts, the different Pd-M molar ratios and the effect of different catalyst carriers on the catalytic activity and selectivity were investigated. The results show that the Pd, In and Pd and Cu metal particles in the supported bimetallic catalyst and the copper-based bimetallic catalyst are mainly distributed on the surface of the carrier. In the Pd-In/ Al-Al2O3 catalyst, the particle size of the Pd particles is between 2nm and 5nm, and the catalytic activity of the series of catalysts is firstly increased with the increase of the molar ratio of the catalyst, mainly because the addition of an appropriate amount of In aid to the Pd single metal catalyst can improve the dispersity and the surface area of the metal catalyst, The dispersion and surface area of Pd in the IP-2 catalyst prepared by the preparation method are as high as 46.6% and 92.7m2g-1, while the dispersion and surface area of the catalyst in the monometallic catalyst are 23.7% and 529.9m2g-1, but with the increasing of In content, the conversion of p-chlorophenol is suppressed. in the Pd-Cu/ AC bimetallic catalyst, the particle size of the Pd particles is between 1nm and 6nm, and as the molar ratio of the copper is increased, the catalytic performance of the series of catalysts is also reduced, and the main reason is that the copper content in the copper-based bimetallic catalyst is changed, and when the copper content is low, the copper particles in the catalyst are dispersed between the nanoparticles, increasing its degree of dispersion and surface area, but as the copper content continues to increase, the copper particles begin to cover on the surface of the graphite particles or in combination with the graphite particles to form an alloy to reduce the activity of the catalyst as the copper content continues to increase. The dispersion and surface area of the CP-2 catalyst in the series of catalysts are respectively 47.6% and 106.2m2g-1, respectively, so the activity of the CP-2 catalyst is also proved to be the best, and the p-chlorophenol can be completely converted within 30 minutes. The catalytic activity of the series of catalysts is higher than that of the copper-based bimetallic catalyst supported on alumina, mainly because the surface area of the activated carbon is significantly higher than the surface area of the alumina (the surface area of the activated carbon is 704 m2 g-1, while the surface area of the alumina is 92.3m2 g-1), the catalyst with active carbon as the carrier shows a higher degree of dispersion than the catalyst supported by the alumina. because of the absence of a metal component in the activated carbon, when the activated carbon is used as the carrier, the interaction with the active center metal is relatively weak, and in contrast, the metal in the alumina may have a greater effect on the active carbon, Therefore, the catalyst with active carbon as the carrier shows higher catalytic activity. The CP-2 catalyst loaded with activated carbon can complete the conversion of the chlorophenol in half an hour, and under the same conditions, the CP-1-2 catalyst with the alumina as the carrier will need one hour for the conversion of the chlorophenol. in the removal of the p-chlorophenol in water, the molar ratio of the in/ Pd to the in/ Pd mole ratio of the alumina as the support is 0.1/ 1, the performance of the p-chlorophenol is optimized by the IP-2 catalyst prepared by the in-in Pd impregnation method, the Cu/ Pd molar ratio of the active carbon as a carrier is 0.3/ 1, The removal of p-chlorophenol with the CP-2 catalyst prepared by the pre-Cu-Pd impregnation method is the best. The above shows that the conversion of the chlorophenol is mainly related to the dispersion and specific surface of Pd, and the higher Pd dispersion can improve the catalytic activity of the catalyst. The results show that the catalytic activity of the three-metal-series catalyst is much lower than that of the bimetallic catalyst. The catalytic performance of the three-metal catalyst of the mixed-plus-iron-copper series is higher than the three-metal catalyst of the first copper-and-copper-copper series, and the copper-fired trimetal catalyst prepared by the impregnation sequence of the first copper and the second-metal catalyst is better than the three-metal catalyst of the first-step copper-fired copper-copper series.
【学位授予单位】:烟台大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 曾奕昌;刘丰烈;;钴催化剂制造过程中矽酸钴的生成及其影响[J];科学通报;1955年10期
2 ;催化剂性能测试(一)——催化剂强度测定仪[J];上海化工;1977年04期
3 杨可钦;;高钼镍和钼镍磷催化剂的催化性能对比[J];石油炼制与化工;1982年11期
4 厉杜生;我国硫酸生产用钒催化剂的早期研制工作[J];硫酸工业;1984年02期
5 金荣达;;Z_(403H)型轻油转化催化剂性能的研究[J];辽宁化工;1988年05期
6 钱水林;;国内外变换催化剂的发展概况[J];小氮肥设计技术;1989年04期
7 纵秋云,李欣,郭建学,张新堂,苏旭;钛促进型耐硫变换催化剂的性能[J];应用化学;2001年08期
8 蒋文贞,张志祥,陈建设;银催化剂使用前后的微观变化[J];石化技术;2004年02期
9 赵罗生;;新型金属载体消氢催化剂的研究[J];舰船科学技术;2006年02期
10 赵志利;李建伟;陈标华;;三氧化二铁晶型对铁铬系高温变换催化剂性能的影响[J];现代化工;2006年S2期
相关会议论文 前10条
1 辛勤;;粒子大小、微区结构和组成对催化剂性能的影响[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年
2 吴慧;樊金串;黄伟;谢克昌;;聚乙二醇对合成二甲醚浆状催化剂性能的影响研究[A];第十三届全国催化学术会议论文集[C];2006年
3 王丽丽;贾美林;照日格图;郝向英;;以分子筛为载体的纳米金催化剂的性能研究[A];第五届全国环境催化与环境材料学术会议论文集[C];2007年
4 潘兆德;王宏悦;蔡亮;胡文培;刘坤;;高活性耐硫变换催化剂的研制[A];第六届全国工业催化技术及应用年会论文集[C];2009年
5 赵晓争;高雄厚;张忠东;张莉;刘宏海;;不同类型稀土元素对原位晶化型催化剂性能的影响[A];甘肃省化学会第二十七届年会暨第九届甘肃省中学化学教学经验交流会论文摘要集[C];2011年
6 孙欣欣;林强;李金兵;;载体预处理工艺对乙烯氧化银催化剂性能的影响[A];第九届全国工业催化技术及应用年会论文集[C];2012年
7 王红岩;郑起;于政锡;林性贻;;钼助剂对乙炔法合成醋酸乙烯催化剂性能的影响[A];第十三届全国催化学术会议论文集[C];2006年
8 曾利辉;高武;李岳锋;丁良;姚琪;;3α-高托品烷胺合成用催化剂的研究[A];第十四届全国青年催化学术会议会议论文集[C];2013年
9 黄文氢;张飞;张颖;张明森;;改性甲醇制低碳烯烃催化剂的表征[A];中国化工学会2008年石油化工学术年会暨北京化工研究院建院50周年学术报告会论文集[C];2008年
10 苗婷;朱海燕;;活性炭载体结构及预处理对催化剂性能的影响[A];第十届全国工业催化技术及应用年会论文集[C];2013年
相关重要报纸文章 前10条
1 凌锋;国产催化剂工业化应用结新果[N];中国石化报;2005年
2 王永军;多功能硫黄回收催化剂经济又环保[N];中国石化报;2009年
3 江书程 仇国贤 辛国萍;原位晶化型催化剂达国际先进水平[N];中国矿业报;2009年
4 通讯员 赵淑玲;吉林石化新型催化剂一次通过考核标定[N];中国石油报;2009年
5 本报记者 曾敏学;湖南建长:生产世界一流催化剂[N];岳阳晚报;2011年
6 本报记者 许琦敏;促使催化剂分子“单兵作战”[N];文汇报;2012年
7 郝晓丽 朱向学 姚伟;大连化物所自主合成吡啶新型催化剂[N];科技日报;2009年
8 陶炎;乙二醇生产成本大降[N];中国石化报;2011年
9 通讯员 仇国贤;推广新型催化剂增产乙烯上千吨[N];中国石油报;2011年
10 李晓岩;气相法聚乙烯催化剂投用[N];中国化工报;2003年
相关博士学位论文 前10条
1 白翠华;含氮MOFs衍生复合材料的制备及其催化性能研究[D];华南理工大学;2015年
2 刘子萱;聚吡咯修饰碳载钴催化剂对氧还原催化作用的研究[D];浙江大学;2013年
3 李加新;锂离子/空气电池碳基电极的设计、制备及性能研究[D];福建师范大学;2015年
4 李彦朋;硫化钼/碳及硫/碳复合电极材料性能与催化机理研究[D];哈尔滨工业大学;2015年
5 梁虹;车用柴油机SCR系统催化箱温度场特性研究[D];北京理工大学;2015年
6 赵波;富铈基铈锆复合氧化物材料的制备及其负载单Pd催化剂三效催化性能的研究[D];浙江大学;2011年
7 李庆远;磁性金属—有机骨架催化剂的合成、结构表征和催化性能研究[D];北京化工大学;2014年
8 仇方圆;微纳过渡金属复合物的制备及其催化NH_3BH_3放氢性能研究[D];南开大学;2014年
9 胡晓静;TiO_2纳米管基催化剂的制备、表征及催化性能研究[D];南开大学;2014年
10 徐悦;基于第一性原理筛选甲烷重整反应用金属及合金催化剂[D];华东理工大学;2014年
相关硕士学位论文 前10条
1 刘璐;研磨等方法制备多壁碳纳米管负载钯基催化剂[D];河北师范大学;2015年
2 赵博琪;聚合物改性Pt基催化剂对甲醇电催化氧化性能研究[D];沈阳理工大学;2015年
3 朱振玉;碱性介质中醇类电氧化Pd系催化剂的制备及性能研究[D];沈阳理工大学;2015年
4 钟成林;二氧化碳加氢合成甲醇Cu/TiO_2催化剂的研究[D];上海应用技术学院;2015年
5 李黎;介孔CuO-ZnO-ZrO_2催化二氧化碳加氢合成甲醇[D];上海应用技术学院;2015年
6 邓博洋;超声雾化分解法制备Mn/TiO_2系列低温SCR催化剂研究[D];浙江工商大学;2015年
7 王小星;SiO_2/g-C_3N_4和ZrO_2/g-C_3N_4催化剂光催化降解染料的研究[D];浙江师范大学;2015年
8 黄建萍;pH响应型界面活性SiO_2材料制备及催化剂性能研究[D];山西大学;2015年
9 徐培培;贵金属改性的NPG催化剂对甲醇甲酸催化氧化性能的研究[D];曲阜师范大学;2015年
10 鹿国萍;金属氧化物对Pt、Pd催化剂上醇类电氧化反应的促进作用[D];曲阜师范大学;2015年
,本文编号:2412428
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2412428.html