多晶体材料微观结构演化的晶体相场法研究
[Abstract]:The micro-evolution behavior of real materials has always been an interesting research direction, especially the defect motion on a nanoscale scale. Because of the limitation of the equipment, people can only infer the behavior of the material by the pattern obtained from the experiment and the result of some data. But when the material structure or the environment of the research is very complex, computer simulation experiment is needed at this time. The crystal phase field (PFC,Phase-Field-Crystal) method is a kind of research method which can simulate the nano-scale structure of crystal. By determining the density field and minimizing the free energy function of the research object, the corresponding kinetic equations are combined. The evolution process of crystal materials at nanometer scale can be simulated. At present, it has developed into a mature research method for simulating nano-materials. Compared with the traditional phase-field method, the crystal phase-field method can describe the atomic-scale structure and the large diffusion time-scale. The metal materials used in engineering are usually polycrystals. In the process of material processing, polycrystals will be subjected to various effects, such as extrusion, corrosion, high temperature and so on, which directly affect the change of microstructure inside the material. So the research on plastic deformation of polycrystals has been paid more and more attention. In view of this, the PFC method will be used to study the grain boundary evolution process of pure material polycrystalline materials under the action of single, biaxial stress and dynamic and static loads. The dislocation motion, dislocation response and temperature, stress and strain rate on grain boundary will be investigated. The relationship between direction and stress form is studied, the evolution process of grain boundary movement is studied, the variation of internal distortion energy is analyzed, and the micro-mechanism of stress action on nano-polycrystalline materials is revealed. The conclusions are as follows: 1. PFC method is used to simulate the plastic deformation of polycrystals. The phenomena of grain rotation, grain annexation, grain boundary migration and so on are observed. The grain rotation occurs mainly between the two grains with smaller orientation difference, while the phenomenon of grain annexation occurs between the large grain and the small grain. 2, the change of temperature makes the grain boundary pre-melt in varying degrees. It is difficult to rotate the grain at low temperature, and the dislocation slip easily into the grain, which compensates the difference of grain orientation. When the temperature is higher, the grain boundary migration speed is faster, and it is easier to appear the phenomenon of grain annexation. 3, the direction of grain growth changes with the change of stress direction, and the grain growth tends to develop in the direction perpendicular to the pressure axis. The grain boundary tends to develop parallel or perpendicular to the pressure axis. 4. When the strain rate is increased, the velocity of grain boundary migration and dislocation movement becomes faster. Under the action of static biaxial stress, the polycrystalline material changes dramatically in the early stage, resulting in the emission and decomposition of dislocations. Compared with the evolution of the samples under dynamic biaxial stress, the static biaxial stress can form a higher dislocation density at the early stage.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O76
【参考文献】
相关期刊论文 前10条
1 杨剑群;马国亮;李兴冀;刘超铭;刘海;;温度和应变速率耦合作用下纳米晶Ni压缩行为研究[J];物理学报;2015年13期
2 刘军伟;王建峰;史武军;段文晖;;第一性原理计算方法在拓扑材料研究中的应用[J];科研信息化技术与应用;2014年04期
3 高英俊;周文权;邓芊芊;罗志荣;林葵;黄创高;;晶体相场方法模拟高温应变作用的预熔化晶界的位错运动[J];金属学报;2014年07期
4 黄礼琳;华平;王玉玲;黄创高;高英俊;;凸曲率衬底外延生长界面演化的晶体相场模拟[J];广西科学;2014年03期
5 马礼敦;;X射线晶体学的百年辉煌[J];物理学进展;2014年02期
6 范巍;曾雉;;氧化镁纳米多晶的微结构和磁性[J];物理学报;2014年04期
7 袁林;敬鹏;刘艳华;徐振海;单德彬;郭斌;;多晶银纳米线拉伸变形的分子动力学模拟研究[J];物理学报;2014年01期
8 邹章雄;项金钟;许思勇;;Hall-Petch关系的理论推导及其适用范围讨论[J];物理测试;2012年06期
9 陈成;陈铮;杨涛;张静;;晶体相场模型的研究进展[J];材料导报;2012年09期
10 霍菲;梁军浩;赵继伟;;晶粒生长拓扑学的相场法模拟[J];热加工工艺;2012年04期
相关会议论文 前1条
1 曲绍兴;周昊飞;;纳米孪晶界对金属材料强韧性影响的原子尺度研究[A];中国计算力学大会'2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集[C];2010年
相关博士学位论文 前8条
1 胡将将;纳米晶Cu,Ni及Ni-Fe合金力学行为及其变形机制的研究[D];吉林大学;2015年
2 秦洪;多晶纯钛室温下不同应变速率塑性变形的孪生形变机制研究[D];重庆大学;2014年
3 韩双;电沉积块体纳米晶Ni的压缩力学行为及微观结构演化研究[D];吉林大学;2014年
4 罗志荣;金属材料微观组织结构演化的相场法研究[D];广西大学;2013年
5 于凤荣;Bi_2Te_3纳米晶块体材料的制备及结构和热电性能研究[D];燕山大学;2012年
6 马文;冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D];国防科学技术大学;2011年
7 吴艳青;多晶材料高温大变形细观力学行为研究[D];西北工业大学;2003年
8 张静武;金属塑性变形与断裂的TEM/SEM原位研究[D];燕山大学;2002年
相关硕士学位论文 前5条
1 汪凯;多晶体材料加工的细观塑性有限元模拟[D];昆明理工大学;2013年
2 张少义;晶体相场方法研究晶体外延生长界面结构与位错的迁移[D];广西大学;2012年
3 张倩;等温过程曲率驱动晶粒长大的元胞自动机模拟[D];东北大学;2012年
4 陈锋;高应变率和大变形对材料微晶化改性的影响之研究[D];宁波大学;2007年
5 杨昕昕;OA理论和DVM方法对Al、Ti、Rh和Ir的电子结构和物理性质的研究[D];中南大学;2002年
,本文编号:2447861
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2447861.html