可见光辐射下新型可循环石墨烯-铁酸铋杂化催化剂高效光催化降解氨氮(英文)
[Abstract]:In recent years, graphene, manganese ferrate and nickel ferrate were doped with graphene, manganese ferrate and nickel ferrate by a simple one-step hydrothermal method, and nanometer photocatalysis materials of manganese ferrate and nickel ferrate on activated carbon were prepared successively, and it was found that under the action of visible light radiation, nano-photocatalysis materials of manganese ferrate and nickel ferrate were prepared. Both of these photocatalysts can catalyze the decomposition of hydrogen peroxide with visible light energy to produce active factors, thus effectively degrade ammonia. Based on this, a new type of polyphase bismuth graphene ferrate (rG-BiFeO_3) catalyst was successfully prepared by a simple hydrothermal method, and the photodegradation of ammonia-nitrogen was carried out without the addition of H_2O_2. The results show that the composite photocatalyst can still accept visible light radiation and efficiently decompose ammonia nitrogen under the synergistic action of rG and BiFeO_3. The average particle size of rG-BiFeO_3 is about 18.5 nm. calculated from the results of X-ray diffraction. It can be observed that nano-particles of BiFeO_3 dispersed uniformly on the two-dimensional surface of rG by clear transmission electron microscope of rG-BiFeO_3. Compared with the Fourier transform infrared spectra of BiFeO_3 and rG-BiFeO_3, the chemical bond between rG and BiFeO_3 may be formed. Raman spectra show that the blue-shift of D-band and G-band of the pure GO,rG-BiFeO_3 Raman line indicates that the GO in the bismuth graphene ferrate composite is fully reduced to graphene. Compared with the UV-visible diffuse reflectance spectra of BiFeO_3 and rG-BiFeO_3, it was found that the diffuse reflectance spectra of rG-BiFeO_3 shifted red, indicating that the response of rG-BiFeO_3 photocatalytic materials to visible light was further improved. The specific surface area measurement showed that the specific surface area of BiFeO_3 was 21.0 mg ~ 2 g, while the specific surface area of rG-BiFeO_3 catalyst was increased to 48.6 mg ~ 2 g, which indicated that the adsorption performance of rG-BiFeO_3 would be greatly improved. The results of visible light catalytic reaction showed that the degradation rate of 50 mg/L NH_3-N was 91.2% under the condition of 0.2 g rG-BiFeO_3 without adding H 2O 2 and p H 2O 11. The kinetic study showed that the oxidation of ammonia nitrogen over BiFeO_3 photocatalyst followed the first order reaction kinetics. In addition, due to the weak magnetic properties of BiFeO_3 nano-materials themselves, the composites of BiFeO_3 and r-G also have certain magnetic properties and are easy to be recovered. After 7 cycles of recycling, the catalyst still has high photocatalytic activity. According to previous reports, there are two pathways for the oxidation of ammonia nitrogen adsorbed on the surface of the catalyst: (1) ammonia is decomposed into nitrogen after being oxidized to a series of intermediate products such as NH_2,NH and N_2H_x y (x y 0, 1, and 2); (2) ammonia was oxidized to the intermediate product HONH_2, and finally decomposed to nitrate and nitrite. In this paper, all-wavelength scanning of ammonia solution in rG-BiFeO_3 photodegradation system was carried out by UV-vis spectrophotometer. No absorbance was detected at 206and 211nm. Thus, the possibility that the final decomposition product of ammonia nitrogen is nitrate and nitrite is excluded. This means that the rG-BiFeO_3 visible light degradation system conforms to the first oxidation pathway. Further study on the mechanism shows that the hole produced by the synergistic action between graphene and bismuth ferrate, superoxide anion radical and hydroxyl radical can directly oxidize NH_3 to N ~ (2 +) _ (2) in the reaction process. Hydroxyl radical plays the most important role in the whole process of oxidative decomposition.
【作者单位】: 上海交通大学环境科学与工程学院;苏州科技大学环境科学与工程学院;
【基金】:supported by the National Natural Science Foundation of China (21347006, 21576175, 51478285, 51403148) the Opening Project of Key Laboratory of Jiangsu Province Environmental Science and Engineering of Suzhou University of Science and Technology (zd131205) the Collaborative Innovation Center of Technology and Material of Water Treatment~~
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 ;科学家首次用纳米管制造出石墨烯带[J];电子元件与材料;2009年06期
2 ;石墨烯研究取得系列进展[J];高科技与产业化;2009年06期
3 ;新材料石墨烯[J];材料工程;2009年08期
4 ;日本开发出在蓝宝石底板上制备石墨烯的技术[J];硅酸盐通报;2009年04期
5 马圣乾;裴立振;康英杰;;石墨烯研究进展[J];现代物理知识;2009年04期
6 傅强;包信和;;石墨烯的化学研究进展[J];科学通报;2009年18期
7 ;纳米中心石墨烯相变研究取得新进展[J];电子元件与材料;2009年10期
8 徐秀娟;秦金贵;李振;;石墨烯研究进展[J];化学进展;2009年12期
9 张伟娜;何伟;张新荔;;石墨烯的制备方法及其应用特性[J];化工新型材料;2010年S1期
10 万勇;马廷灿;冯瑞华;黄健;潘懿;;石墨烯国际发展态势分析[J];科学观察;2010年03期
相关会议论文 前10条
1 成会明;;石墨烯的制备与应用探索[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 钱文;郝瑞;侯仰龙;;液相剥离制备高质量石墨烯及其功能化[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
3 张甲;胡平安;王振龙;李乐;;石墨烯制备技术与应用研究的最新进展[A];第七届中国功能材料及其应用学术会议论文集(第3分册)[C];2010年
4 赵东林;白利忠;谢卫刚;沈曾民;;石墨烯的制备及其微波吸收性能研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
5 沈志刚;李金芝;易敏;;射流空化方法制备石墨烯研究[A];颗粒学最新进展研讨会——暨第十届全国颗粒制备与处理研讨会论文集[C];2011年
6 王冕;钱林茂;;石墨烯的微观摩擦行为研究[A];2011年全国青年摩擦学与表面工程学术会议论文集[C];2011年
7 赵福刚;李维实;;树枝状结构功能化石墨烯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 吴孝松;;碳化硅表面的外延石墨烯[A];2011中国材料研讨会论文摘要集[C];2011年
9 周震;;后石墨烯和无机石墨烯材料:计算与实验的结合[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
10 周琳;周璐珊;李波;吴迪;彭海琳;刘忠范;;石墨烯光化学修饰及尺寸效应研究[A];2011中国材料研讨会论文摘要集[C];2011年
相关重要报纸文章 前10条
1 姚耀;石墨烯研究取得系列进展[N];中国化工报;2009年
2 刘霞;韩用石墨烯制造出柔性透明触摸屏[N];科技日报;2010年
3 记者 王艳红;“解密”石墨烯到底有多奇妙[N];新华每日电讯;2010年
4 本报记者 李好宇 张們捷(实习) 特约记者 李季;石墨烯未来应用的十大猜想[N];电脑报;2010年
5 证券时报记者 向南;石墨烯贵过黄金15倍 生产不易炒作先行[N];证券时报;2010年
6 本报特约撰稿 吴康迪;石墨烯 何以结缘诺贝尔奖[N];计算机世界;2010年
7 记者 谢荣 通讯员 夏永祥 陈海泉 张光杰;石墨烯在泰实现产业化[N];泰州日报;2010年
8 本报记者 纪爱玲;石墨烯:市场未启 炒作先行[N];中国高新技术产业导报;2011年
9 周科竞;再说石墨烯的是与非[N];北京商报;2011年
10 王小龙;新型石墨烯材料薄如纸硬如钢[N];科技日报;2011年
相关博士学位论文 前10条
1 吕敏;双层石墨烯的电和磁响应[D];中国科学技术大学;2011年
2 罗大超;化学修饰石墨烯的分离与评价[D];北京化工大学;2011年
3 唐秀之;氧化石墨烯表面功能化修饰[D];北京化工大学;2012年
4 王崇;石墨烯中缺陷修复机理的理论研究[D];吉林大学;2013年
5 盛凯旋;石墨烯组装体的制备及其电化学应用研究[D];清华大学;2013年
6 姜丽丽;石墨烯及其复合薄膜在电极材料中的研究[D];西南交通大学;2015年
7 姚成立;多级结构石墨烯/无机非金属复合材料的仿生合成及机理研究[D];安徽大学;2015年
8 伊丁;石墨烯吸附与自旋极化的第一性原理研究[D];山东大学;2015年
9 梁巍;基于石墨烯的氧还原电催化剂的理论计算研究[D];武汉大学;2014年
10 王义;石墨烯的模板导向制备及在电化学储能和肿瘤靶向诊疗方面的应用[D];复旦大学;2014年
相关硕士学位论文 前10条
1 詹晓伟;碳化硅外延石墨烯以及分子动力学模拟研究[D];西安电子科技大学;2011年
2 王晨;石墨烯的微观结构及其对电化学性能的影响[D];北京化工大学;2011年
3 苗伟;石墨烯制备及其缺陷研究[D];西北大学;2011年
4 蔡宇凯;一种新型结构的石墨烯纳米器件的研究[D];南京邮电大学;2012年
5 金丽玲;功能化石墨烯的酶学效应研究[D];苏州大学;2012年
6 黄凌燕;石墨烯拉伸性能与尺度效应的研究[D];华南理工大学;2012年
7 刘汝盟;石墨烯热振动分析[D];南京航空航天大学;2012年
8 雷军;碳化硅上石墨烯的制备与表征[D];西安电子科技大学;2012年
9 于金海;石墨烯的非共价功能化修饰及载药系统研究[D];青岛科技大学;2012年
10 李晶;高分散性石墨烯的制备[D];上海交通大学;2013年
,本文编号:2462942
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2462942.html