当前位置:主页 > 科技论文 > 化学论文 >

基于功能化石墨烯电化学传感器的构建及其生物分析应用研究

发布时间:2019-05-18 18:24
【摘要】:电化学传感器是指在电极和电解液异相相接的界面上,因电荷的迁移而发生的电极反应,从而将响应信号转化为电信号的化学传感器。电化学传感器在分析检测领域逐渐成为重要的检测技术,因其具操作简便、选择性高、分析速度快、价格低廉、并且可进行在线分析等传统分析方法不可比拟的优势,已经在药理学、环境、食品、医药研发、农业、发酵工业生产等领域得到了高度的关注和广泛的应用。自2010年,Andre Geim和Konstantin Novoselov获得诺贝尔物理学奖,国内外对石墨烯倍受关注。本论文制备了石墨烯及功能化石墨烯杂化材料,并探究了其在电化学传感器制备中的应用。主要研究了石墨烯及其功能化复合物作为电极材料在毛细管电化学发光、葡萄糖生物传感器和P450酶生物传感器制备中的应用,实现了对5-羟色胺和酪胺酸、葡萄糖、以及非那西丁的测定。全文共分为四章:第一章:简要介绍了电化学传感器的实际应用,综述了在电化学传感器以石墨烯修饰电极的研究进展。第二章:通过将三(2,2'-联吡啶)钌(Ru(bpy)32+)结合2,2-连氮基-双(3-乙基苯并噻唑-6-磺酸)(ABTS)功能化的石墨烯,并且成功的固定在电极表面,制备了一种具有高稳定性电致发光电极。Ru(bpy)32+与ABTS功能化的石墨电极之间的结合除了π-π电子的共轭作用外,还有静电作用力。连有毛细管电泳的电化学发光(ECL)传感器被用于检测酪氨酸和5-羟色胺,利用它们对Ru(bpy)32+/三丙胺(TPA)体系产生淬灭效应的。在经过对毛细管电泳分离和ECL检测条件进行优化后,这种淬灭机制得到了证实。在信噪比为S/N=3时,针对酪氨酸和5-羟色胺的检测线分别为0.1μM和0.02μM。此种方法将来可被用于检测小肠癌患者中血液内的酪氨酸和5-羟色胺。第三章:通过制备聚二烯二甲基氯化铵(PDDA)功能化石墨烯(G),使其表面带正电,与带负电的纳米金(Au NPs),进行静电自组装,制得Au NPs/G。为了验证这种材料的应用性,将其修饰到玻碳电极上,以葡萄糖氧化酶(GOD)作为模板。将制备的G/Au NPs/GOD/GCE作为葡萄糖传感器,其平均电子转移速率为1.64 s-1。制备的葡萄糖传感器对葡萄糖的响应范围是1~9m M,检出限为0.1m M(S/N=3)。这种传感器能够有效的排除一般共存化合物的干扰,并且可以对血清样品进行测定,其回收率为在95.7%~107.6%。因此,可以说明G/Au NPs杂化材料为GOD提供了优良的导电性和适宜的微环境,这也为固定其他的酶或蛋白质提供一种有利的平台。第四章:本章主要是将P450酶固定在修饰电极上。通过制备以阳离子聚丙烯酰胺功能化的石墨烯材料,利用材料的物理化学性质固定P4501A2酶,从而研究对药物的代谢。制备的CYP1A2/CPAM-G/GCE的对非那西丁响应的灵敏度为1.333μA(μmol/L)-1cm-2,检出限5.57μmol/L。同时,构建的CYP450酶电化学传感不仅具有评价药物相互作用的潜能,而且还能为体外构建其他生物分子体系提供参考价值。
[Abstract]:Electrochemical sensor refers to the electrode reaction due to the transfer of charge on the interface between electrode and electrolyte, so as to convert the response signal into electrical signal. Electrochemical sensor has gradually become an important detection technology in the field of analysis and detection, because it has incomparable advantages over traditional analysis methods, such as simple operation, high selectivity, fast analysis speed, low price, and on-line analysis. It has been highly concerned and widely used in pharmacology, environment, food, pharmaceutical research and development, agriculture, fermentation industry and other fields. Since, Andre Geim and Konstantin Novoselov won the Nobel Prize in Physics in 2010, graphene has attracted much attention at home and abroad. In this paper, graphene and functional fossil graphene hybrid materials were prepared and their applications in the preparation of electrochemical sensors were discussed. The application of graphene and its functional complexes as electrode materials in the preparation of capillary electrochemiluminescence, glucose biosensor and P450 enzyme biosensor was studied. And the determination of phenacetin. The full text is divided into four chapters: in the first chapter, the practical application of electrochemical sensor is briefly introduced, and the research progress of graphene modified electrode in electrochemical sensor is reviewed. In chapter 2, graphene functionalized by tris (2, 2 脳 bipyridine) ruthenium (Ru (bpy) 32), 2-nitro-bis (3-ethylbenzothiazole-6-sulfonic acid) was successfully fixed on the surface of the electrode, A highly stable electroluminous electrode was prepared. The binding of Ru (bpy) 32 to ABTS functionalized graphite electrode has electrostatic force in addition to the conjugated 蟺-蟺 electrons. The electrochemiluminescence (ECL) sensor with capillary electrophoresis was used to detect tyrosine and serotonin, and they were used to quench Ru (bpy) 32 / tripropylamine (TPA) system. After optimizing the separation and ECL detection conditions of capillary electrophoresis, the quenching mechanism was confirmed. When the signal-to-noise ratio (SNR) is S/N=3, the detection lines for tyrosine and serotonin are 0.1 渭 M and 0.02 渭 m, respectively. This method can be used to detect tyrosine and serotonin in the blood of patients with small bowel cancer in the future. In chapter 3, Au NPs/G. was prepared by preparing polydiene dimethyl ammonium chloride (PDDA) functional fossil Moene (G), with positive electricity on its surface and electrostatic self-assembly with negative gold (Au NPs),. In order to verify the application of this material, it was modified to glassy carbon electrode and glucose oxidase (GOD) was used as template. Using the prepared G/Au NPs/GOD/GCE as glucose sensor, the average electron transfer rate is 1.64 s 鈮,

本文编号:2480232

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2480232.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d5c37***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com