应用红外光谱检测卤醇脱卤酶催化活性及初步研究其催化过程的结构基础
[Abstract]:The halohydrin dehalogenase HheC not only can catalyze the generation of the o-halohydrin carbon-halogen bond, but also can catalyze the ring-opening reaction of the metal halide to generate the corresponding halogen-substituted alcohol under the mediation of a plurality of nucleophiles. Therefore, the enzyme plays an important role in the fields of degrading environment organic halide pollutants and producing chiral drug intermediates. However, there are some disadvantages in the practical application of the wild-type halohydrin dehalogenase, and the orientation transformation of the halohydrin dehalogenase and the screening of the mutant library have become an important work in this field. To this end, the establishment of a fast and sensitive library screening method is particularly important. Currently, the method for screening the halogen-free alcohol dehalogenation by the halogen-free dehalogenation enzyme is more mature, but the method is convenient and reliable, and the open-loop reaction detection method is not reported. Because of the various nucleophiles N3-(N = N = N), CN-(C = N), OCN-(O = C = N), SCN-(S = C = N) in the ring-opening reaction of the catalytic epoxide, the halohydrin dehalogenase HheC has the characteristic infrared absorption peak which is different from the protein and the amine I band. In principle, the infrared spectroscopy technique can be used to detect the ring-opening reaction activity of the halohydrin dehalogenase catalytic epoxide. On the basis of this, the open-loop reaction of CHBE (full name and Chinese name), which is mediated by HheC, is used as a mode reaction system, and an enzyme activity detection method based on Fourier transform infrared (FTIR) technology is established. First, the position of the free N3-and its open-loop product azido-substituted alcohol is detected under the condition of enzymatic reaction, and the standard curves of the two compounds are respectively prepared at the positions of 2048 cm-1 and 2115 cm-1, and the linear relationship with the peak area is good. The curve of the concentration of the substrate NaN3 and the product 4-azido-3-hydroxybutyrate over time was obtained by detecting the curve of the absorbance over time in the enzymatic reaction of 2048 cm-1 and 2115 cm-1, and then the specific enzyme activity of the halohydrin dehalogenase was calculated to be 0.19 U/ mg. At the same time, we also tested the enzyme activity of five other epoxides, and the results were close to those measured by gas chromatography (GC). It is shown that it is feasible to use the FTIR method to carry out the enzyme activity detection of the halohydrin dehalogenase. Compared with the traditional GC method, the detection method has the advantages of continuous, intuitive, real-time, fast and the like. In order to study the changes of the microstructural changes caused by the binding of the enzyme with the substrate, the infrared spectroscopy has a great advantage in the study of the kinetics of the catalytic reaction of the enzyme, and we try to apply the technology to study the structural changes of the halohydrin dehalogenase catalytic reaction. The results show that there is no significant change in the infrared absorption peak position and the peak area of the halohydrin dehalogenase in the presence of and without the N3-group. In combination with the relevant research results of the prophase of the enzyme, it is possible that the ratio of the N3-group to the infrared absorption of the N3-group is weak and the proportion of the halohydrin dehalogenase which is bound to the N3-group is low. By increasing the concentration of the substrate and the enzyme, no expected results are obtained, and for this reason, we intend to solve the problem by introducing other possible infrared probes. The means to introduce infrared spectroscopy probes by non-native amino acid-labeled proteins are now widely concerned, as the method is free of the limitation of the marker sites. To this end, by means of the gene codon extension technique, by transferring to an orthogonal modified tRNA in the E.coli body and an ammonia-tRNA synthetase that is paired with it, And the mark at the special positioning point of the amino acid corresponding to the amber stop codon UAG is introduced in the halogen alcohol dehalogenation enzyme by the non-natural amino acid. The results show that the expression system has been successfully constructed and successfully expressed and purified the halohydrin dehalogenase which is marked by the exogenous infrared probe at the specific site, and lays the foundation for the subsequent application of the infrared spectroscopy to study the structural dynamics of the halohydrin dehalogenation enzyme catalysis process.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O657.33;O643.3
【相似文献】
相关期刊论文 前10条
1 D.L.Phillips,W.M.Kwok;水催化脱卤反应:构建每次一个水分子的纳米化学反应体系(英文)[J];光散射学报;2005年03期
2 范晖;卤代烃催化加氢脱卤反应的研究[J];辽宁工学院学报;2000年02期
3 卢桂宁;陶雪琴;党志;黄伟林;;产乙烯脱卤拟球菌195脱卤反应途径的理论探针[J];中国环境科学;2010年01期
4 吴范宏;黄炳南;黄维垣;;亚磺化脱卤反应[J];有机化学;1993年05期
5 薛福玲;熊金锋;莫广珍;彭湃;陈任宏;汪朝阳;;脱卤反应研究进展[J];有机化学;2013年11期
6 陈俭龙;关于亚磺化脱卤反应的若干新探索全氟和α,α-二氯多氟烷基亚磺酸盐及磺酰溴的反应研究[J];应用化学;1987年04期
7 郦海青,廖世健,徐筠,余道容,乔志敏;有机卤化物还原脱卤的高效方法[J];科学通报;1996年06期
8 张玉花;陈德展;;烷基卤脱卤酶作用机制的研究新进展[J];山东化工;2009年12期
9 江黎明,陈胜,,黄宪;碲氢化钠作用下α-卤代酰胺的选择脱卤反应[J];化学试剂;1994年01期
10 马江华,刘新会,康汝洪;有机卤化物催化脱卤研究的一些新进展[J];分子催化;1998年06期
相关会议论文 前2条
1 袁长富;卢春山;张群峰;马磊;李小年;;卤代芳香族硝基化合物抑制脱卤机理研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
2 黄炳南;吴范宏;周澄明;;亚磺化脱卤反应的ESR研究[A];第七届全国波谱学学术会议论文摘要集[C];1992年
相关博士学位论文 前4条
1 杨志军;复杂持久性卤代有机物的化学表征及催化脱卤研究[D];中国科学院研究生院(大连化学物理研究所);2005年
2 陈亮;亚磺化脱卤反应在含氟卟啉合成及转化中的应用[D];湖南大学;2007年
3 张媛;几类蛋白的结构预测及分子对接的理论研究[D];吉林大学;2005年
4 薛锋;甘油化学酶法合成光学纯环氧氯丙烷关键酶的挖掘与改造[D];浙江工业大学;2015年
相关硕士学位论文 前9条
1 辛东民;应用红外光谱检测卤醇脱卤酶催化活性及初步研究其催化过程的结构基础[D];电子科技大学;2017年
2 郑华钰;三维结构指导的卤醇脱卤酶HheC卤离子结合位点的改造[D];电子科技大学;2015年
3 焦安浩;卤醇脱卤酶转化特定底物研究[D];齐鲁工业大学;2014年
4 刘羽;卤醇脱卤酶C(HheC)的分子定向进化研究[D];电子科技大学;2013年
5 江荣香;卤醇脱卤酶HheA表达优化及定向进化[D];电子科技大学;2012年
6 邓文凤;基于组合设计策略提高卤醇脱卤酶HheC降解2,3-DCP的活性[D];电子科技大学;2017年
7 曹京雯;含脱卤酶菌种的筛选[D];北京化工大学;2010年
8 朱学琛;卤醇脱卤酶HheA的改造和生物催化特性的研究[D];电子科技大学;2012年
9 郑楷;卤醇脱卤酶HheC的改造及其在手性药物合成中的应用[D];电子科技大学;2011年
本文编号:2483932
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2483932.html