基于银/铂纳米模拟酶表面修饰的铜离子比色检测方法研究
发布时间:2021-08-25 04:42
通过对银/铂纳米簇(Ag/Pt NCs)的表面修饰调控其催化活性,建立了一种高灵敏的比色法检测Cu2+。巯基丙酸能够抑制Ag/Pt NCs的催化活性,而巯基丙酸与Cu2+作用后,将导致上述抑制作用减弱。基于上述原理,通过测量Ag/Pt NCs催化TMB-H2O2反应产生的显色信号,可以实现Cu2+的比色检测。本方法检测Cu2+的线性范围为10100 nmol/L,检出限(3σ)为5.0 nmol/L。将本方法应用于实际水样中Cu2+的检测,结果表明,本方法具有操作简单、成本低、灵敏度高、特异性好等优点。
【文章来源】:分析化学. 2017,45(04)北大核心EISCICSCD
【文章页数】:6 页
【部分图文】:
Ag/PtNCs,(B)加MPA孵育后的Ag/PtNCs,及(C)加入MPA及Cu2+混合液孵育后的Ag/PtNCs的TEM图
加入MPA及Cu2+混合液孵育后的Ag/PtNCs的TEM图Fig.1TEMimagesofnanoclusters(NCs).(A)Ag/PtNCs,(B)Ag/PtNCsafterincubatedwithmercapto-propionicacid(MPA)and(C)Ag/PtNCsafterincubatedwiththemixtureofMPAandCu2+.20μmol/LMPA;100nmol/LCu2+.2.41Energy(keV)3.01.81.20.60.0023456789PtMaAgLbAgLaAgMaA1Energy(keV)4172980023456789PtMaAgLaAgLbAgMaOKaB149SKaPtLa5977461010PtLaCount(×103)Count图2Ag/PtNCs(A)和与MPA孵育后的Ag/PtNCs(B)的EDX图Fig.2Energydisperxivex-ray(EDX)spectraof(A)Ag/PtNCsand(B)Ag/PtNCsafterincubatedwithMPA1.51.0550姿(nm)Absorbance5006006507007500.50.0abcd图3MPA和Cu2+对Ag/PtNCs催化活性的调控Fig.3UV-visspectraof(a)Ag/PtNCs-TMB-H2O2re-actionsolution,(b)Cu2+-MPA-Ag/PtNCs-TMB-H2O2reactionsolution,(c)MPA-Ag/PtNCs-TMB-H2O2reac-tionsolution,(d)TMB-H2O2reactionsolutioncontai-ning20μmol/LMPA,100nmol/LCu2+.3320334033603380edcbaMagneticfield(G)abcde图4DMPO-·OH加合物的EPR光谱Fig.4Electronparamagneticresonance(EPR)spectrumofDMPO-·OHadduct.(a)DMPO,(b)DMPO+H2O2,(c)DMPO+Ag/PtNCs+H2O2,(d)DMPO+3-MPA+Ag/PtNCs+H2O2and(e)DMPO+MPA+Cu2++Ag/PtNCs+H2O2.0.1mol/LDMPO;500nmol/LAg/PtNCs;0.7mol/LH2O2;30μmol/LMPA;200nmol/LCu2+.而MPA与Cu2+反应后,再
100nmol/LCu2+.2.41Energy(keV)3.01.81.20.60.0023456789PtMaAgLbAgLaAgMaA1Energy(keV)4172980023456789PtMaAgLaAgLbAgMaOKaB149SKaPtLa5977461010PtLaCount(×103)Count图2Ag/PtNCs(A)和与MPA孵育后的Ag/PtNCs(B)的EDX图Fig.2Energydisperxivex-ray(EDX)spectraof(A)Ag/PtNCsand(B)Ag/PtNCsafterincubatedwithMPA1.51.0550姿(nm)Absorbance5006006507007500.50.0abcd图3MPA和Cu2+对Ag/PtNCs催化活性的调控Fig.3UV-visspectraof(a)Ag/PtNCs-TMB-H2O2re-actionsolution,(b)Cu2+-MPA-Ag/PtNCs-TMB-H2O2reactionsolution,(c)MPA-Ag/PtNCs-TMB-H2O2reac-tionsolution,(d)TMB-H2O2reactionsolutioncontai-ning20μmol/LMPA,100nmol/LCu2+.3320334033603380edcbaMagneticfield(G)abcde图4DMPO-·OH加合物的EPR光谱Fig.4Electronparamagneticresonance(EPR)spectrumofDMPO-·OHadduct.(a)DMPO,(b)DMPO+H2O2,(c)DMPO+Ag/PtNCs+H2O2,(d)DMPO+3-MPA+Ag/PtNCs+H2O2and(e)DMPO+MPA+Cu2++Ag/PtNCs+H2O2.0.1mol/LDMPO;500nmol/LAg/PtNCs;0.7mol/LH2O2;30μmol/LMPA;200nmol/LCu2+.而MPA与Cu2+反应后,再与Ag/PtNCs孵育,将使得结合在Ag/PtNCs表面的MPA减少,从而减弱了上述抑制作用,因此,EPR图谱上显现出较弱的DMPO-·OH信号(曲线e)。473第4期吴亮亮等:基于银/铂纳米模拟酶表面修饰的铜离子比色检测方法研究
【参考文献】:
期刊论文
[1]新型水溶性咪唑基硅量子点制备及用于果蔬中痕量铜的荧光检测[J]. 王佳佳,连曼,熊杰,李在均. 分析化学. 2016(03)
本文编号:3361418
【文章来源】:分析化学. 2017,45(04)北大核心EISCICSCD
【文章页数】:6 页
【部分图文】:
Ag/PtNCs,(B)加MPA孵育后的Ag/PtNCs,及(C)加入MPA及Cu2+混合液孵育后的Ag/PtNCs的TEM图
加入MPA及Cu2+混合液孵育后的Ag/PtNCs的TEM图Fig.1TEMimagesofnanoclusters(NCs).(A)Ag/PtNCs,(B)Ag/PtNCsafterincubatedwithmercapto-propionicacid(MPA)and(C)Ag/PtNCsafterincubatedwiththemixtureofMPAandCu2+.20μmol/LMPA;100nmol/LCu2+.2.41Energy(keV)3.01.81.20.60.0023456789PtMaAgLbAgLaAgMaA1Energy(keV)4172980023456789PtMaAgLaAgLbAgMaOKaB149SKaPtLa5977461010PtLaCount(×103)Count图2Ag/PtNCs(A)和与MPA孵育后的Ag/PtNCs(B)的EDX图Fig.2Energydisperxivex-ray(EDX)spectraof(A)Ag/PtNCsand(B)Ag/PtNCsafterincubatedwithMPA1.51.0550姿(nm)Absorbance5006006507007500.50.0abcd图3MPA和Cu2+对Ag/PtNCs催化活性的调控Fig.3UV-visspectraof(a)Ag/PtNCs-TMB-H2O2re-actionsolution,(b)Cu2+-MPA-Ag/PtNCs-TMB-H2O2reactionsolution,(c)MPA-Ag/PtNCs-TMB-H2O2reac-tionsolution,(d)TMB-H2O2reactionsolutioncontai-ning20μmol/LMPA,100nmol/LCu2+.3320334033603380edcbaMagneticfield(G)abcde图4DMPO-·OH加合物的EPR光谱Fig.4Electronparamagneticresonance(EPR)spectrumofDMPO-·OHadduct.(a)DMPO,(b)DMPO+H2O2,(c)DMPO+Ag/PtNCs+H2O2,(d)DMPO+3-MPA+Ag/PtNCs+H2O2and(e)DMPO+MPA+Cu2++Ag/PtNCs+H2O2.0.1mol/LDMPO;500nmol/LAg/PtNCs;0.7mol/LH2O2;30μmol/LMPA;200nmol/LCu2+.而MPA与Cu2+反应后,再
100nmol/LCu2+.2.41Energy(keV)3.01.81.20.60.0023456789PtMaAgLbAgLaAgMaA1Energy(keV)4172980023456789PtMaAgLaAgLbAgMaOKaB149SKaPtLa5977461010PtLaCount(×103)Count图2Ag/PtNCs(A)和与MPA孵育后的Ag/PtNCs(B)的EDX图Fig.2Energydisperxivex-ray(EDX)spectraof(A)Ag/PtNCsand(B)Ag/PtNCsafterincubatedwithMPA1.51.0550姿(nm)Absorbance5006006507007500.50.0abcd图3MPA和Cu2+对Ag/PtNCs催化活性的调控Fig.3UV-visspectraof(a)Ag/PtNCs-TMB-H2O2re-actionsolution,(b)Cu2+-MPA-Ag/PtNCs-TMB-H2O2reactionsolution,(c)MPA-Ag/PtNCs-TMB-H2O2reac-tionsolution,(d)TMB-H2O2reactionsolutioncontai-ning20μmol/LMPA,100nmol/LCu2+.3320334033603380edcbaMagneticfield(G)abcde图4DMPO-·OH加合物的EPR光谱Fig.4Electronparamagneticresonance(EPR)spectrumofDMPO-·OHadduct.(a)DMPO,(b)DMPO+H2O2,(c)DMPO+Ag/PtNCs+H2O2,(d)DMPO+3-MPA+Ag/PtNCs+H2O2and(e)DMPO+MPA+Cu2++Ag/PtNCs+H2O2.0.1mol/LDMPO;500nmol/LAg/PtNCs;0.7mol/LH2O2;30μmol/LMPA;200nmol/LCu2+.而MPA与Cu2+反应后,再与Ag/PtNCs孵育,将使得结合在Ag/PtNCs表面的MPA减少,从而减弱了上述抑制作用,因此,EPR图谱上显现出较弱的DMPO-·OH信号(曲线e)。473第4期吴亮亮等:基于银/铂纳米模拟酶表面修饰的铜离子比色检测方法研究
【参考文献】:
期刊论文
[1]新型水溶性咪唑基硅量子点制备及用于果蔬中痕量铜的荧光检测[J]. 王佳佳,连曼,熊杰,李在均. 分析化学. 2016(03)
本文编号:3361418
本文链接:https://www.wllwen.com/kejilunwen/huaxue/3361418.html
教材专著