基于ARM和DSP的微小型组合导航系统研究
本文选题:微小型组合导航系统 切入点:扩展卡尔曼滤波 出处:《哈尔滨工程大学》2012年硕士论文
【摘要】:微小型组合导航系统能够充分发挥各导航子系统的优点,弥补各自的不足,并扩展了组合导航系统的应用范围,是当前导航技术研究的热点。微小型组合导航系统是利用MEMS技术的微惯性测量单元为核心,以GPS或者其它定位方法作为辅助,,使用信息融合的方法有效的提高系统的精度和可靠性。本文以社区监控机器人的应用为背景完成基于ARM和DSP的微小型组合导航系统方案设计。 本文在捷联惯性导航原理和GPS原理的基础上,逐步对整个微小型组合导航系统展开研究。首先确立微小型组合导航系统方案,导航计算机采用ARM和DSP的双CPU结构,将整个系统分解为数据采集模块和捷联解算模块;针对微惯性测量单元误差较大的问题,采用通过试验的方法对惯性导航系统误差进行建模和仿真分析,提出能够影响导航精度的主要因子。 其次,研究捷联解算的原理,对比多种解算方法之后采用基于四元数的捷联解算方法。根据最小方差估计推导出卡尔曼滤波,针对卡尔曼滤波原理提出卡尔曼滤波在组合导航中应用应该注意的问题;根据贝叶斯估计推出了粒子滤波,提出粒子滤波在组合导航系统中应用的方案,能够有效的解决粒子滤波的粒子退化问题。 分析捷联惯性导航系统中的误差形式和GPS的误差形式,根据各子系统的误差模型建立滤波方程,采用位置速度的组合模式,建立组合导航系统模型。并且在Matlab软件中设计轨迹发生器,用来模拟导航参数。根据建立的模型和设置的仿真参数,设计EKF、UKF、PF滤波算法进行系统仿真,并利用统计学的方法对多次仿真结果进行综合分析,实验结果表明PF的滤波精度最高但是运算时间最长,使系统不能满足实时性需求,UKF滤波精度能够满足系统需求,运算时间大约是EKF的运算时间的1.2倍,但也能满足实时性要求,EKF滤波精度最低。 最后,根据室外监控机器人自身设备要求和导航计算机的发展趋势,设计基于ARM和DSP的微小型组合导航系统。在基于分布式模块化设计方案的基础上完成了微小型组合导航系统的硬、软件开发。其中在任务管理模块完成了数据采集和串口通信程序,在数据处理模块完成了捷联惯性导航系统的捷联解算算法和组合导航的UKF滤波算法程序。利用机器人自带的机载计算机完成能够用3D模型直观显示运动状态的人机交互软件的设计。通过最终的跑车试验,验证了本文所设计的微小型组合导航系统的可行性,为室外机器人的导航定位工程化奠定了基础。
[Abstract]:Micro integrated navigation system can take full advantage of the navigation subsystem, to make up for their deficiencies, and expand the application range of the integrated navigation system is the research hotspot of navigation technology. Micro navigation system is the use of MEMS technology for micro inertial measurement unit as the core, with GPS or other positioning methods as auxiliary using the method of information fusion system to improve the accuracy and reliability. This paper takes application as the background to complete the community monitoring robot design scheme of micro navigation system based on ARM and DSP.
Based on strapdown inertial navigation principle and the principle of GPS, gradually expanded to the study of micro navigation system. Firstly, establishing the micro integrated navigation system, the navigation computer based on double CPU structure of ARM and DSP, the whole system is divided into data acquisition module and decoding module to solve the problem of strapdown inertial measurement unit; the error of the modeling and simulation analysis of the inertial navigation system error by means of testing, puts forward the main factors that influence the navigation precision.
Secondly, the principle of Strapdown algorithm, comparing many calculation methods using strapdown four element calculation method based on minimum variance estimate is derived. According to the Calman filter, Calman filter principle is proposed for application should pay attention to Calman filter in integrated navigation problem; according to Bias launched the estimation of particle filter, this paper uses the particle filter in integrated navigation system scheme, can effective particle filter to solve the particle degradation problem.
Error analysis and error form form GPS strapdown inertial navigation system, is established according to the filtering equation error model of each subsystem, the combination mode of position and velocity, the establishment of integrated navigation system. And the design of trajectory generator in Matlab software, used to simulate the navigation parameters. According to the simulation parameters, and set up the design model EKF, UKF, PF filtering algorithm for system simulation and comprehensive analysis of the simulation results using statistical methods, the experimental results show that PF filtering accuracy is the highest but the longest operation time, the system can not meet the real-time requirement, UKF filtering accuracy can meet the requirement of the system, the operation time is about 1.2 times the calculation time of EKF, but also can meet the requirements of real-time, accuracy of EKF filter is minimum.
Finally, according to the development trend of outdoor monitoring robot navigation computer and its equipment requirements, the design of the micro integrated navigation system based on ARM and DSP. The software development based on distributed modular design on the completion of the micro integrated navigation system. In the hardware, the task management module to complete the data acquisition and serial communication in the program, the data processing module to complete the strapdown inertial navigation system solver algorithm and UKF filter algorithm of integrated navigation is designed. Using robotic airborne computer software can achieve human-computer interaction 3D model for the visual display of the motion state. Through the experiment finally, verify the feasibility of the micro integrated navigation system the design of the navigation project for outdoor robots of the foundation.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TN967.2;TP368.1
【参考文献】
相关期刊论文 前9条
1 蒋庆仙;;关于MEMS惯性传感器的发展及在组合导航中的应用前景[J];测绘通报;2006年09期
2 王忆锋;;MEMS和导航级MEMS惯性传感器[J];飞航导弹;2008年08期
3 于洁;王新龙;;SINS/GPS紧密组合导航系统仿真研究[J];航空兵器;2008年06期
4 吴海仙;俞文伯;房建成;;高空长航时无人机SINS/CNS组合导航系统仿真研究[J];航空学报;2006年02期
5 李辉;沈莹;张安;程t$;;交互式多模型目标跟踪的研究现状及发展趋势[J];火力与指挥控制;2006年11期
6 肖乾;多模型估计理论[J];舰船科学技术;2005年02期
7 俞瑛;;硅微机械惯性传感器技术及其应用[J];集成电路通讯;2005年01期
8 何广军;李宝全;马计房;;SINS/GPS组合导航的半实物仿真实验系统设计[J];计算机仿真;2006年07期
9 臧荣春;崔平远;崔祜涛;金艺;;基于IMM-UKF的组合导航算法[J];控制理论与应用;2007年04期
相关博士学位论文 前1条
1 马云峰;MSINS/GPS组合导航系统及其数据融合技术研究[D];东南大学;2006年
相关硕士学位论文 前6条
1 钟圣;捷联惯导系统标定与传递对准技术研究[D];国防科学技术大学;2010年
2 李大威;卡尔曼滤波在INS/GPS组合导航中的应用研究[D];中北大学;2006年
3 王体昌;基于ARM的嵌入式组合导航平台设计[D];大连理工大学;2009年
4 夏全喜;SINS/GPS/EC组合导航系统设计与实验研究[D];哈尔滨工程大学;2009年
5 李鹏程;组合导航及其滤波算法研究[D];西安电子科技大学;2010年
6 田磊;GPS/INS组合导航中的非线性滤波方法研究[D];电子科技大学;2010年
本文编号:1722320
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1722320.html