基于嵌入式系统人脸识别方法的研究
[Abstract]:With the development of society and the urgent requirement of rapid and effective automatic authentication, biometric identification technology has been developed rapidly in recent decades. As one of the biometric techniques, face recognition is a hot topic in the field of pattern recognition. Face recognition is based on the existing face sample set, using certain algorithm to extract face visual feature information from face image, using image processing and pattern recognition technology to obtain and analyze one or more human faces from image or video. And then extract effective recognition information from it to automatically identify the identity of the person to be identified in the image, which involves computer graphics, computer vision, pattern recognition, machine learning, perceptual science, artificial intelligence, Computer intelligence and other multi-disciplinary technology. Compared with other traditional biometrics, face recognition has the advantages of easy collection, convenience and friendly interaction, and has been gradually accepted by the public, such as intelligent man-machine interface, image retrieval, video processing, etc. Safety and other fields have extremely wide application value. Broadly speaking, face recognition has two main parts: face detection and face recognition. In the construction of face recognition system, face recognition technology includes face image acquisition, face and human eye location, face image recognition preprocessing, feature extraction, identity identification and so on. In this paper, face recognition is studied in a narrow sense after the study of human eye location, face image preprocessing, feature extraction, identity recognition judgment. This paper mainly introduces the research background and significance of face recognition at home and abroad, the theory and algorithm of face recognition and image processing algorithm. Then the embedded system is designed, the Samsung S3C2440arm microprocessor is chosen as the hardware base, and the embedded operating system, such as transplanting Linux kernel to U-boot, is built. Finally, principal component analysis (PCA) algorithm is used to extract face features, Adaboost algorithm is used to train the sample set, and Euclidean distance measurement feature matching is used to test the research results.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP391.41;TP368.1
【参考文献】
相关期刊论文 前10条
1 李登辉;徐亚宁;王岩红;;人脸识别中图像预处理方法的研究[J];大众科技;2011年04期
2 李敏跃 ,李威龙;人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别[J];广西工学院学报;2005年S3期
3 黄志武;潘俊杉;;基于嵌入式LINUX驱动程序开发的研究[J];电脑与电信;2007年06期
4 赵英男;孟宪权;徐勇;侯春明;;光照变化条件下的人脸识别预处理[J];吉首大学学报(自然科学版);2007年02期
5 薛源;李艳萍;;人脸识别技术的探讨和研究[J];机械管理开发;2010年05期
6 覃志祥;丁立新;简国强;秦前清;李元香;;一种改进的线性判别分析法在人脸识别中的应用[J];计算机工程;2006年04期
7 张君昌;张译;;基于改进AdaBoost算法的人脸检测[J];计算机仿真;2011年07期
8 吴巾一;周德龙;;人脸识别方法综述[J];计算机应用研究;2009年09期
9 田印中;董志学;黄建伟;;基于PCA的人脸识别算法研究及实现[J];内蒙古科技与经济;2010年06期
10 丁日峰;丁辉;;嵌入式人脸检测系统开发研究[J];首都师范大学学报(自然科学版);2009年S1期
相关硕士学位论文 前7条
1 崔浩;基于S3C2440的智能评分系统设计[D];武汉科技大学;2011年
2 王彦堂;基于ARM的嵌入式Linux系统研究与应用[D];山东大学;2007年
3 阮揆;人脸识别技术的研究与应用[D];国防科学技术大学;2006年
4 塔娜;基于ARM的人脸识别系统设计与实现[D];东北师范大学;2009年
5 周辉;基于嵌入式Linux的人脸识别系统的研究[D];长安大学;2009年
6 戴栋;基于ARM9的特定人脸识别系统[D];中南大学;2009年
7 饶文高;基于ARM的嵌入式数字图像处理方法研究[D];黑龙江大学;2010年
本文编号:2125782
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2125782.html