非绝热和乐量子计算NHQC+方案的解析解以及在超导量子比特中的应用
发布时间:2022-12-09 05:48
量子计算是基于量子力学特性,也就是利用了量子态的叠加和纠缠性质的一种新型计算手段,其能调控量子信息单元进行计算,是当前世界科技前沿的研究热点之一。量子计算的优越性主要体现在信息表示,存储与处理能力上,这是由于量子态的叠加性使得其初态可以制备在Bloch球面上的任意一点,相比于经典比特只能处在0和1,即只能处于Bloch球面上两个顶点处,量子态初态可包含更为丰富的信息;纠缠性则使得量子态所处的态空间(希尔伯特空间)随比特数增长而指数增长,极大地提高了计算的并行能力。因此与传统的经典计算相比较,量子计算能更有效地解决一些经典计算机花费巨大时间或能耗才能解决的问题,有前者无可比拟的本质上的优势。但是量子计算机也面临着巨大的挑战:一方面,量子计算需要量子系统的相干性为基础,但目前的实验体系对环境的封闭效果仍不够好,不可避免地会导致量子系统的退相干;另一方面,量子态从制备到测量过程中会引入一系列错误,包括由于测量仪器精确度不足在探测信号中引入的噪声以及系统误差等。因此,想要真正实现大规模量子计算,需要一系列能够在量子比特体系上实现任意幺正变换的量子门,而这些完备的量子门组合要同时具有高保真度,时...
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 The Background and Significance
1.2 Literature Review and Analysis for the Holonomic Quantum Computation
1.2.1 Background
1.2.2 Geometric Quantum Computation
1.2.3 Non-adiabatic Holonomic Quantum Computation
1.3 The Advantages and Development for Superconducting Qubits
1.4 Main Research Contents of Research
1.5 Summary
Chapter 2 Analytic Solution of Non-adiabatic Holonomic Quantum Computation on Superconducting Qubits
2.1 Background
2.1.1 An Optimal Scheme of Non-adiabatic Holonomic Quantum Computation
2.1.2 Analytically Solvable Two-level Quantum Systems Model
2.2 Universal Single-qubit Gates with Analytic Solution
2.2.1 Hamiltonian
2.2.2 The Analytical Solutions for the Hamiltonian
2.2.3 General Unitary for Holonomic Gates
2.3 Quantum Gates performance on a Superconducting Qubit
2.3.1 Experimental Hamiltonian on a Superconducting Qubit
2.3.2 State Populations and Fidelity on a Superconducting Qubit
2.3.3 Randomize Benchmarking
2.4 Non-trivial Two-qubit Gates
2.5 Summary
Chapter 3 Robustness against Noises
3.1 Background
3.2 The Principle of Robustness against Noises
3.3 Robustness against Environment induced Fluctuation
3.4 Summary
Conclusions
结论
References
Acknowledgements
本文编号:3714953
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 The Background and Significance
1.2 Literature Review and Analysis for the Holonomic Quantum Computation
1.2.1 Background
1.2.2 Geometric Quantum Computation
1.2.3 Non-adiabatic Holonomic Quantum Computation
1.3 The Advantages and Development for Superconducting Qubits
1.4 Main Research Contents of Research
1.5 Summary
Chapter 2 Analytic Solution of Non-adiabatic Holonomic Quantum Computation on Superconducting Qubits
2.1 Background
2.1.1 An Optimal Scheme of Non-adiabatic Holonomic Quantum Computation
2.1.2 Analytically Solvable Two-level Quantum Systems Model
2.2 Universal Single-qubit Gates with Analytic Solution
2.2.1 Hamiltonian
2.2.2 The Analytical Solutions for the Hamiltonian
2.2.3 General Unitary for Holonomic Gates
2.3 Quantum Gates performance on a Superconducting Qubit
2.3.1 Experimental Hamiltonian on a Superconducting Qubit
2.3.2 State Populations and Fidelity on a Superconducting Qubit
2.3.3 Randomize Benchmarking
2.4 Non-trivial Two-qubit Gates
2.5 Summary
Chapter 3 Robustness against Noises
3.1 Background
3.2 The Principle of Robustness against Noises
3.3 Robustness against Environment induced Fluctuation
3.4 Summary
Conclusions
结论
References
Acknowledgements
本文编号:3714953
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/3714953.html