基于AMESim作业型ROV液压推进系统的设计与仿真
发布时间:2017-12-31 23:33
本文关键词:基于AMESim作业型ROV液压推进系统的设计与仿真 出处:《中国海洋大学》2014年硕士论文 论文类型:学位论文
更多相关文章: 作业型ROV 液压系统设计与建模 PID控制 仿真分析
【摘要】:由于现今人类对陆地资源的过度开采,将难以满足未来人们对资源的需求,而作为生命摇篮的海洋,却蕴含丰富的资源。因而,如何开发海洋资源将成为国民经济可持续发展的一大举措。虽然世界各国现已着眼于开发海洋资源,,但由于海洋资源主要集中于深水域,作业环境十分恶劣,故现今对海洋资源的开发仍然没有取得巨大进步。由于作业型ROV具有环境适应性强、作业时间长以及便于水面控制等特点受到越来越多的关注。液压推进系统作为作业型ROV的一个关键子系统也是实现水下机器人其他功能的一个前提条件,国外都对此做了众多的研究,但我国取得的成果依旧很少。 本文以开架式作业型ROV为研究对象,根据性能指标设计液压推进系统。为了实现ROV6自由度运动,首先在结构上需要对8个推进器要求做了相应的空间布置。根据设计指标计算ROV在6自由度运动时各自所受阻力。根据空间推力与力矩的计算式以及计算阻力值,求出ROV完成各自由度运动需要单个推进器需要输出的推力。 其次,在动力上选择液压系统为执行元件推进器提供所需的能量。根据推进器输出推力值,为液压推进器选择了型号。由该型号的输出推力与压力、流量曲线图,可知水下机器人完成各自由度运动液压推进系统需为推进器提供相应压力和流量的油液。因此,确定了液压系统额定压力和最大流量。根据液压系统设计步骤,对液压站和执行元件控制油路做了研究,并绘出液压原理图,同时为各液压元件选出合适型号。根据AMESim软件的功能,利用软件自带的标准件以及建模元件并参照液压原理图,完成了作业型ROV液压推进系统的建模。 最后,在控制上选取一种方法使推进器输出所需推力来验证系统性能。根据推进力与转速之间的关系,得出水下机器人完成6自由度运动各自对应推进器需达到不同的目标转速。分别采用闭环与PID控制方式来控制液压推进系统进行仿真分析,通过比较仿真结果,发现PID控制方法在验证液压推进系统设计合理性方面更具有说服力。同时,在对PID控制液压推进系统仿真中,利用AMESim与Matlab/Simulink联合仿真技术,发挥两个软件的各自优势,不但建立了液压模型和控制模型,而且还确定了相关仿真参数,这都有助于提高系统仿真效率。因此,采用PID控制液压推进系统对ROV进行了6自由度运动仿真,根据仿真结果,验证了本文设计的液压推进系统在性能上能够实现作业型ROV的6自由度运动。
[Abstract]:Because of the over-exploitation of land resources, it will be difficult to meet the future demand for resources, while the ocean, as the cradle of life, contains rich resources. How to develop marine resources will become a major measure for the sustainable development of national economy. Although many countries in the world have focused on the exploitation of marine resources, the marine resources are mainly concentrated in deep waters, and the operating environment is very bad. Therefore, no great progress has been made in the exploitation of marine resources, because of the strong environmental adaptability of the operational ROV. More and more attention has been paid to the characteristics of long working time and easy water surface control. As a key subsystem of ROV, hydraulic propulsion system is also a prerequisite for the realization of other functions of underwater vehicle. Foreign countries have done a lot of research on this, but the achievements of our country are still few. In this paper, open-stand ROV is taken as the research object, and hydraulic propulsion system is designed according to the performance index. In order to realize the ROV6 freedom movement, the hydraulic propulsion system is designed. First of all, it is necessary to make the corresponding space arrangement for the eight propellers. According to the design index, the resistance of the ROV in the motion of 6 degrees of freedom is calculated. According to the formula of the space thrust and torque and the calculation of the resistance, the resistance is calculated according to the design index. Force value. The thrust required by a single thruster to complete the motion of each degree of freedom by ROV is obtained. Secondly, the hydraulic system is chosen to provide the required energy for the actuator thruster. According to the thrust value of the thruster, the model is selected for the hydraulic thruster. The flow curve shows that the underwater vehicle to complete the hydraulic propulsion system of various degrees of freedom need to provide the corresponding pressure and flow oil for the propeller. The rated pressure and the maximum flow rate of the hydraulic system are determined. According to the design steps of the hydraulic system, the hydraulic station and the control oil path of the actuator are studied, and the hydraulic principle diagram is drawn. According to the function of AMESim software, the standard parts and modeling components are used and the hydraulic schematic diagram is consulted. The modeling of the operating ROV hydraulic propulsion system is completed. Finally, a control method is selected to make the thruster output the required thrust to verify the performance of the system, according to the relationship between the propulsion force and the rotational speed. It is concluded that the underwater vehicle needs to achieve different target speeds to complete the 6-DOF motion. The closed-loop and PID control methods are used to control the hydraulic propulsion system for simulation analysis. By comparing the simulation results, it is found that the PID control method is more persuasive in verifying the rationality of hydraulic propulsion system design. At the same time, in the simulation of PID control hydraulic propulsion system. Using the technology of AMESim and Matlab/Simulink, not only the hydraulic model and control model are established, but also the advantages of the two software are brought into play. And the related simulation parameters are determined, which are helpful to improve the efficiency of system simulation. Therefore, the PID control hydraulic propulsion system is used to simulate the 6-DOF motion of ROV, and according to the simulation results. It is verified that the hydraulic propulsion system designed in this paper can achieve 6 degrees of freedom movement of the operating ROV in performance.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TH137
【参考文献】
相关期刊论文 前5条
1 余旋;陈海虹;郑瑜;史红燕;;基于AMESim的减压阀建模与仿真分析[J];起重运输机械;2011年10期
2 江玲玲;张俊俊;;基于AMESim与Matlab\Simulink联合仿真技术的接口与应用研究[J];通用机械;2007年09期
3 余佑官,龚国芳,胡国良;AMESim仿真技术及其在液压系统中的应用[J];液压气动与密封;2005年03期
4 于延凯,孙斌,李一平,林扬;液压系统在水下机器人中的应用[J];液压与气动;2002年11期
5 殷佳洪;黄晓华;;基于AMESIM的盾构机液压推进系统仿真分析[J];机械制造与自动化;2013年04期
本文编号:1361987
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1361987.html