当前位置:主页 > 科技论文 > 机械论文 >

基于HHT和WNN的齿轮箱故障诊断

发布时间:2018-01-02 14:12

  本文关键词:基于HHT和WNN的齿轮箱故障诊断 出处:《武汉工程大学》2011年硕士论文 论文类型:学位论文


  更多相关文章: 齿轮箱 故障诊断 Hilbert-Huang变换 经验模态分解 小波神经网络


【摘要】:近几十年来,由于齿轮箱故障诊断的至关重要而被广泛研究。本文是基于希尔伯特-黄变换(Hilbert-Huang Transform,简称HHT)和小波神经网络(Wavelet Neural Network,简称WNN)的齿轮箱故障诊断,Hilbert-Huang变换是一种新的时频分析方法,同时也是一种自适应信号处理方法。它包括经验模态分解(Empirical Mode Decomposition,简称EMD)方法和Hilbert谱分析两个过程。EMD方法是基于信号的局部特征时间尺度,将复杂的信号分解为有限的本征模态函数(Intrinsic Mode Function,简称IMF)之和;对本征模态函数应用Hilbert变换可以得到故障信号的Hilbert谱和Hilbert边际谱,从而能有效的提取故障特征,识别故障模式,进行故障诊断,这种自适应的分解方法非常适合于非线性和非平稳过程的分析。 基于齿轮箱故障振动信号所表现的非线性非平稳特征,为了提取齿轮箱中的故障特征信息,本文首先对齿轮箱中采集的振动信号作小波包分解,对信号作降噪处理,同时选取特定频带的小波重构信号应用Hilbert-Huang变换进行了分析,得到经验模态分解(EMD)过程和一系列本征模态函数(IMF),选择特定的本征模态函数作Hilbert变换,获取振动信号的Hilbert谱和Hilbert边际谱,提取故障特征频率,有效的识别了齿轮箱中齿轮裂纹的不同故障模式。 本文还提出了一种基于混合特征提取和WNN的齿轮箱故障诊断方法,采用时域分析法、小波分解和小波包分解相结合的方法对齿轮箱振动信号进行故障特征提取,将所提取的特征值作为WNN分类器的特征输入参数,采用反向传播(BP)算法对WNN结构中的平移参数、尺度参数、连接权值和阈值进行调整和优化。通过对三种具有不同裂纹尺寸的故障齿轮进行识别和分类,表明WNN有很好的模式识别和分类能力,能很好地应用于旋转机械的故障诊断。
[Abstract]:In the last several ten years, the gearbox fault diagnosis has been widely studied. This paper is based on Hilbert-Huang Transform, which is based on Hilbert-Huang transform. The gearbox fault diagnosis based on HHT and wavelet Neural network. Hilbert-Huang transform is a new time-frequency analysis method. It is also an adaptive signal processing method, which includes empirical Mode Decomposition. EMD method and Hilbert spectrum analysis are two processes. EMD method is based on the local feature of the signal time scale. The complex signal is decomposed into the sum of Intrinsic Mode function (IMF). The Hilbert spectrum and the Hilbert marginal spectrum of the fault signal can be obtained by applying the Hilbert transform to the intrinsic mode function, which can effectively extract the fault features and identify the fault mode. For fault diagnosis, this adaptive decomposition method is very suitable for nonlinear and nonstationary process analysis. Based on the nonlinear non-stationary characteristic of the gearbox fault vibration signal, in order to extract the fault characteristic information from the gearbox, the vibration signal collected in the gearbox is decomposed by wavelet packet. The signal is de-noised, and the wavelet reconstruction signal with special frequency band is analyzed by Hilbert-Huang transform. The empirical mode decomposition (EMD) process and a series of intrinsic mode functions are obtained, and the specific eigenmode functions are selected for Hilbert transformation. The Hilbert spectrum and Hilbert marginal spectrum of vibration signal are obtained, the fault characteristic frequency is extracted, and the different fault modes of gear crack in gear box are effectively identified. A method of gearbox fault diagnosis based on hybrid feature extraction and WNN is presented in this paper. Wavelet decomposition and wavelet packet decomposition are combined to extract the fault features of the gearbox vibration signal. The extracted eigenvalues are used as the input parameters of the WNN classifier. The translation parameter and scale parameter in WNN structure are analyzed by back-propagation algorithm. The connection weights and thresholds are adjusted and optimized. Through the identification and classification of three kinds of fault gears with different crack sizes, it is shown that WNN has a good capability of pattern recognition and classification. It can be used in fault diagnosis of rotating machinery.
【学位授予单位】:武汉工程大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH165.3

【参考文献】

相关期刊论文 前10条

1 唐贵基;王维珍;胡爱军;田丽洁;;Hilbert-Huang变换及其在大型汽轮机故障诊断中的应用[J];东方电气评论;2005年04期

2 陈涛;李正媛;陈志遥;吕品姬;赵兵;林穗平;;Hilbert-Huang变换在固体潮分析中的应用[J];大地测量与地球动力学;2009年04期

3 陈安华;余小华;黄采伦;;Hilbert-Huang变换在列车踏面故障识别中的应用[J];电子测量与仪器学报;2009年08期

4 张洪钺,闻新,周露;国内控制系统故障诊断技术的现状与展望[J];火力与指挥控制;1997年03期

5 胡劲松,杨世锡,吴昭同,严拱标;基于EMD的旋转机械振动信号Winger分布分析[J];机床与液压;2003年05期

6 杜设亮,傅建中,陈子辰,麦云飞;基于BP神经网络的齿轮故障诊断系统研究[J];机电工程;1999年05期

7 刘晓颖,桂卫华;复杂过程的故障诊断技术[J];计算机工程与应用;2001年07期

8 汪鲁才;彭滔;张颖;;基于小波神经网络的齿轮箱故障诊断研究[J];计算机工程与应用;2007年28期

9 周赵凤,徐梓斌;齿轮轮齿裂缝的产生及其应力分析[J];机械强度;2004年02期

10 周东华,王庆林;基于模型的控制系统故障诊断技术的最新进展[J];自动化学报;1995年02期

相关会议论文 前1条

1 全海燕;王威廉;;Hilbert-Huang变换及其在心音信号分析中的应用[A];第十一届全国信号处理学术年会(CCSP-2003)论文集[C];2003年



本文编号:1369564

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1369564.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ec473***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com