基于EEMD和PSO-SVM的滚动轴承故障诊断
本文关键词:基于EEMD和PSO-SVM的滚动轴承故障诊断 出处:《电力科学与工程》2016年10期 论文类型:期刊论文
更多相关文章: 滚动轴承 集成经验模态分解 粒子群算法 支持向量机 内禀模态函数
【摘要】:为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解与粒子群算法优化的支持向量机的故障诊断方法。利用EEMD方法分解振动信号,依据经验选取合适的内禀模态函数进行能量值及包络谱特征幅值比等故障特征参量的计算,构建滚动轴承故障特征向量,然后基于少量不同故障部位及故障程度的样本,利用粒子群算法对支持向量机进行参数优化,进而训练样本并建立故障模型,最后对测试样本进行故障诊断,观察该方法的诊断效果。实验表明,该方法可对多种不同故障状态进行诊断,且分类精度高,证明了振动分析与智能算法结合的方法可有效实现滚动轴承的故障诊断。
[Abstract]:In order to accurately diagnose the rolling bearing fault, a fault diagnosis method of support vector machine based on integrated empirical mode decomposition and particle swarm optimization is proposed. The vibration signal is decomposed by EEMD method. According to the experience, the proper intrinsic mode function is selected to calculate the fault characteristic parameters such as the energy value and the amplitude ratio of the envelope spectrum, and the fault eigenvector of the rolling bearing is constructed. Then based on a small number of samples with different fault locations and degrees of fault, the support vector machine parameters are optimized by particle swarm optimization algorithm, and then the samples are trained and fault models are established. Finally, the fault diagnosis of test samples is carried out. The experimental results show that the method can be used to diagnose many different fault states, and the classification accuracy is high. It is proved that the combination of vibration analysis and intelligent algorithm can effectively realize the fault diagnosis of rolling bearings.
【作者单位】: 华北电力大学控制与计算机工程学院;
【分类号】:TH133.33
【正文快照】: 0引言滚动轴承是旋转机械设备中易受损的部件之一,它的寿命随机性大,失效时产生的振动和噪声会直接影响到机械设备的正常工作,使机械运行状态变差,快速定位轴承故障能缩短维修时间,提高机组的经济效益。随着机械设备逐渐向高速化、大型化和自动化方向发展,对滚动轴承的故障进
【相似文献】
相关期刊论文 前10条
1 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期
2 吴军;李为吉;;改进的粒子群算法及在结构优化中的应用[J];陕西理工学院学报(自然科学版);2006年04期
3 段海涛;刘永忠;冯霄;;水系统优化的粒子群算法分析[J];华北电力大学学报(自然科学版);2007年02期
4 王伟;;混合粒子群算法及其优化效率评价[J];中国水运(学术版);2007年06期
5 付宜利;封海波;孙建勋;李荣;马玉林;;机电产品管路自动敷设的粒子群算法[J];机械工程学报;2007年11期
6 蒋荣华;王厚军;龙兵;;基于离散粒子群算法的测试选择[J];电子测量与仪器学报;2008年02期
7 周苗;陈义保;刘加光;;一种新的协同多目标粒子群算法[J];山东理工大学学报(自然科学版);2008年05期
8 姚峰;杨卫东;张明;;改进粒子群算法及其在热连轧负荷分配中的应用[J];北京科技大学学报;2009年08期
9 张大兴;贾建援;张爱梅;郭永献;;基于粒子群算法的三轴跟瞄装置跟踪策略研究[J];仪器仪表学报;2009年09期
10 王丽萍;江波;邱飞岳;;基于决策偏好的多目标粒子群算法及其应用[J];计算机集成制造系统;2010年01期
相关会议论文 前10条
1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年
2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年
3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年
6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年
7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年
8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年
10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年
相关博士学位论文 前10条
1 王芳;粒子群算法的研究[D];西南大学;2006年
2 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
3 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
4 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
5 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
6 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年
7 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年
8 刘宏达;粒子群算法的研究及其在船舶工程中的应用[D];哈尔滨工程大学;2008年
9 杨轻云;约束满足问题与调度问题中离散粒子群算法研究[D];吉林大学;2006年
10 冯琳;改进多目标粒子群算法的研究及其在电弧炉供电曲线优化中的应用[D];东北大学;2013年
相关硕士学位论文 前10条
1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年
2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年
3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年
4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年
5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年
6 杨伟;基于粒子群算法的氧乐果合成过程建模研究[D];郑州大学;2015年
7 李程;基于粒子群算法的AS/RS优化调度方法研究[D];陕西科技大学;2015年
8 樊伟健;基于混合混沌粒子群算法求解变循环发动机数学模型问题[D];山东大学;2015年
9 陈百霞;考虑风电场并网的电力系统无功优化[D];山东大学;2015年
10 戴玉倩;基于混合动态粒子群算法的软件测试数据自动生成研究[D];江西理工大学;2015年
,本文编号:1419349
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1419349.html