当前位置:主页 > 科技论文 > 机械论文 >

基于限滑差速系统的大型轮式装载机行驶驱动性能研究

发布时间:2018-01-15 02:06

  本文关键词:基于限滑差速系统的大型轮式装载机行驶驱动性能研究 出处:《吉林大学》2012年硕士论文 论文类型:学位论文


  更多相关文章: 轮式装载机 限滑差速器 驱动性能 转向性能


【摘要】:轮式装载机作为一种土方机械,它的工作环境复杂多变,工作场地条件恶劣。装载机经常会遇到两侧轮胎路面附着条件不同的情况,路面附着条件的差异会产生不同程度的轮胎滑动。过度的轮胎滑动会造成装载机通过性、驱动性和燃油经济性变差,工作效率降低。同时,轮胎的滑动也是导致轮胎磨损,影响轮胎使用寿命的重要因素之一。 现代装载机多采用在驱动桥装配限滑差速器来解决以上问题。较常见的是在前驱动桥装配摩擦片式限滑差速器,部分装载机在前、后驱动桥都有装配。在驱动桥上装配摩擦片式限滑差速器在不同程度上改善了由轮胎过度滑动带来的诸多问题。因此,本文主要内容是通过研究摩擦片式限滑差速器的工作原理和特性,分析不同驱动桥配置对装载机驱动性、燃油经济性、工作效率和轮胎滑转率等方面的影响。 虽然摩擦片式限滑差速器在轮式装载机上的应用在一定程度上改善了装载机的实用性,但仍存在一定的局限性。比如在转向过程中,摩擦片式限滑差速器不能解锁,影响了装载机的转向能力,降低传动系统的效率,增加轮胎磨损。另外,其锁紧系数不能调节,影响到其对不同工况的适应性和传动系统的效率。所以,本文的另一部分内容是在前面研究的基础上探讨电控限滑差速器在轮式装载机上的应用性。本文主要做了以下的工作: 1.通过对摩擦片式限滑差速器的结构特性和工作原理的分析,推导了摩擦片式限滑差速器的数学模型。在此基础上,从动力学及运动学角度入手,,推导了主动式限滑差速器的数学模型,在MATLAB/SIMULINK环境中建立了二者的仿真模型; 2.基于80型轮式装载机建立了铰接式车辆8自由度车辆动力学数学模型、动力传动系统数学模型,并在MATLAB/SIMULINK环境下建立了车辆动力学、动力传动系统和轮胎力学的仿真模型; 3.分别设计了装载机直线行驶和转向行驶过程中主动式限滑差速器的控制策略。根据实际情况,设定了四种驱动桥配置(配置1:前、后桥装配主动式限滑差速器;配置2:前、后桥装配摩擦片式限滑差速器;配置3:前、后桥装配开式差速器;配置4:前桥装配摩擦片式限滑差速器,后桥装配开式差速器)。在几个典型工况和不同路面条件下,对以上四种驱动桥配置对装载机各项性能的影响进行对比分析。 得到的主要结论有: 1.直线行驶时,在极端路面条件下,配置1和配置2装载机能保证装载机的通过性,在行驶速度和牵引效率方面前者优于后者;在一般路面条件下,配置1、配置2和配置4装载机都能保证车辆较好的驱动性能。由于锁紧系数不能调节,摩擦片式限滑差速器相比于主动式限滑差速器在差速器传动效率方面略显不足,影响了传动系统效率; 2.转向行驶时,配置1装载机转弯半径最小,有利于工作效率的提高,配置2和配置4装载机转弯半径较大。相对于配置2和配置4,配置1装载机能降低轮胎的磨损,提高装载机转向轻便性; 3.在V型作业循环工况下,相对于配置3,配置1、配置2和配置4装载机完成一次作业循环的时间分别降低了6.2%、3.4%和2.7%;完成一次作业循环所消耗的燃油量分别降低了7.5%、4.7%和3.5%;铲入深度分别提高了13.9%、7.8%和3.5%。配置1和配置2装载机都能降低轮胎滑转量,相比之下前者能更大程度降低轮胎磨损。
[Abstract]:As a kind of earthmoving wheel loader, its working environment is complex and changeable, the work site conditions. The loader often encountered on both sides of the tire road adhesion conditions in different situations, different road adhesion conditions will produce different degrees of tire slip. Excessive tire slip caused by loading machine, driving and fuel the economic deterioration, reduce the work efficiency. At the same time, the tire slip also lead to tire wear, one of the important factors affecting the service life of the tire.
The loader is used more in the drive axle assembly limited slip differential to solve the above problems. The most common is in the front drive axle assembly of the LSD, part of loader at the front and rear drive axle assembly. The assembly has many problems in the LSD caused by excessive tire sliding in different degree of improvement in the drive axle. Therefore, the main contents of this paper are the working principle and characteristics of friction plate limited slip differential through research, analysis of different configuration of drive axle drive loader, fuel economy, influence the work efficiency and the smooth conversion rate of the tyres.
Although the LSD in improving the practicability of the loader in a certain extent the application of wheel loader, but there are still some limitations. For example, in the process of turning, the LSD cannot unlock, affects the steering ability of the loader, lowering the efficiency of the transmission system, increase the tire wear. In addition, the locking coefficient can not be adjusted, affect the efficiency of adaptability and transmission system under different working conditions. So, the other part of this paper is on the basis of previous research on ELSD with application of the load on the wheel. This paper has done the following work:
1. through the analysis of the friction plate limited slip differential characteristics and working principle, derived the mathematical model of the limited slip differential friction. On this basis, starting from the perspective of dynamics and kinematics, the mathematical model of active limited slip differential is derived, in the MATLAB/ SIMULINK environment. The simulation model of the two building;
2., based on the 80 wheel loader, a 8 degree of freedom vehicle dynamics mathematical model of articulated vehicle and a mathematical model of power transmission system were established. And a simulation model of vehicle dynamics, power transmission system and tire mechanics was established under MATLAB/SIMULINK environment.
3. design of loader straight driving and control strategy of active limited slip differential steering process. According to the actual situation, set up four kinds of drive axle configuration (configuration 1: front, rear axle assembly slip differential; active limit configuration 2: before, after the bridge assembly of the LSD configuration; 3: the front, rear axle assembly open differential; configuration 4: front axle assembly the LSD, rear axle assembly). The open differential in several typical conditions and different road conditions, the above four kinds of drive axle configuration of loader performance were analyzed.
The main conclusions are as follows:
1. straight road, in extreme conditions, configuration 1 and 2 loading configuration function to ensure the loader through, in the speed and traction efficiency of the former is better than the latter; in general road conditions, configuration 1, 2 and 4 loader configuration configuration can ensure better performance of driving vehicles. Because the lock the coefficient cannot be adjusted, the LSD compared to active LSD in the differential transmission efficiency is slightly less, affect the transmission efficiency;
2., when steering, the minimum turning radius of the 1 loaders is configured, which is conducive to the improvement of working efficiency. The configuration 2 and the 4 loaders have larger turning radius. Compared with the configuration 2 and the configuration 4, the 1 loading mechanism is configured to reduce the tire wear and improve the steering portability of loaders.
In 3. V operating cycle, compared with the configuration of 3, 2 and 1 configuration, configuration configuration loader 4 time cycle operation completion were reduced by 6.2%, 3.4% and 2.7%; 7.5% to reduce the fuel quantity consumed by a complete cycle operation respectively, 4.7% and 3.5% respectively; shovel depth increase 13.9%, 7.8% and 1 3.5%. configuration and configuration 2 loader can reduce tire slip rate, compared with the former can reduce more tire wear.

【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH243

【参考文献】

相关期刊论文 前10条

1 徐挺;铰接式工程机构——不稳定转向过程的运动学与动力学[J];工程机械;1979年02期

2 赵丁选 ,燕棠 ,陈之立 ,许纯新;铰接式装载机重心位置的确定方法[J];工程机械;1990年09期

3 崔胜民;铰接转向工程机械动态数学模型的建立[J];工程机械;1991年05期

4 王国彪;发动机与液力变矩器共同工作点的优化算法[J];工程机械;1998年03期

5 刘刚,张子达,赵丁选;工程轮胎静力学特性实验研究与参数识别[J];工程机械;2004年07期

6 曾庆强;秦四成;赵腾云;王雪莲;;装载机铲斗铲掘过程受力分析[J];工程机械;2011年01期

7 刘悦,刘爽,鲁统利;液力变矩器的动态特性分析[J];吉林工学院学报(自然科学版);2002年01期

8 王建华;王云成;付铁军;张宝生;;装用机械摩擦片式限滑差速器后轮驱动车辆的动力性[J];吉林大学学报(工学版);2006年02期

9 张杨;刘昕晖;;铰接车体转向横摆稳定性[J];吉林大学学报(工学版);2012年02期

10 王爱红,张洪,林幕义;轮式工程车辆动力传动系动态仿真系统研发[J];机械管理开发;2004年03期

相关博士学位论文 前1条

1 王雪莲;80型轮式装载机动力系统工程特性研究[D];吉林大学;2011年

相关硕士学位论文 前10条

1 郑洪兴;轮式工程机械自动防滑差速系统研究[D];中南林学院;2003年

2 郭彦颖;CVT车辆中发动机建模与整车动力性仿真分析[D];吉林大学;2005年

3 毛啸滇;防滑差速器的应用研究[D];合肥工业大学;2006年

4 谢文云;电控限滑差速器限滑转矩与整车性能匹配的仿真研究[D];吉林大学;2007年

5 贾爱芹;轮式工程机械粘性限滑差速系统的研究[D];西安科技大学;2008年

6 王晓峰;80型轮式装载机动力传动系统性能仿真分析[D];吉林大学;2009年

7 丁华;后轮驱动汽车驱动防滑控制系统建模与控制研究[D];重庆大学;2009年

8 陶礼;轮式工程机械防滑差速系统设计[D];西安科技大学;2009年

9 张禹;轮式工程机械自动防滑差速的轮速检测与控制[D];西安科技大学;2009年

10 何波;轮式装载机驱动桥限滑差速器工作性能分析[D];吉林大学;2009年



本文编号:1426291

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1426291.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户806e3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com