模糊诊断法在风机故障诊断中的研究与应用
发布时间:2018-01-16 11:54
本文关键词:模糊诊断法在风机故障诊断中的研究与应用 出处:《辽宁科技大学》2012年硕士论文 论文类型:学位论文
【摘要】:风机广泛应用于国民生产的各个部门,对国家经济发展起重要作用,因此对风机开展故障诊断和状态监测工作,保证风机良好的运行,具有重大的理论意义和现实意义 本论文将模糊理论应用到风机故障诊断中,依据风机故障的模糊症状进行状态识别并进行模糊推理,从而做出诊断。此方法克服了传统诊断法需要获取精确信息的困难,适应了风机在连续运行过程中,由于受到工艺参数、温度变化、周围环境等因素影响,导致其运行状态和故障表象的随机性和模糊性。 通过对风机故障机理的研究,确定以振动烈度和倍频峰值作为待检故障的征兆库,利用Matlab曲线拟合法和模糊分布法得出隶属函数。参考专家经验与大量诊断实例结果,初步建立模糊矩阵,选择加权平均型模型完成模糊方程。使用大连理工大学研制的PDM2000数据采集分析仪对故障风机进行振动信号采集,然后进行时域和频域分析,得出所需数值进行模糊故障诊断。经实例诊断结果对比,此方法是可行的。 采用C++语言开发出风机模糊故障诊断系统,辅助求解隶属函数和模糊方程并实现模糊矩阵的自学习功能,不断对模糊诊断矩阵加以修正,逐步提高模糊诊断矩阵的适应能力和准确性。 使用该模型对某钢厂内引风机和鼓风机进行测试诊断,经信号采集、数据提取、参照选定、模糊诊断系统诊断等步骤,确定引风机正常,鼓风机为转轴裂纹故障。停机进行检修,显示诊断结果正确,证明了此模型的实用性。
[Abstract]:The fan is widely used in various departments of national production and plays an important role in the development of national economy . Therefore , it is of great theoretical and practical significance to carry out fault diagnosis and state monitoring on the fan so as to ensure the good operation of the fan . In this paper , the fuzzy theory is applied to the fault diagnosis of the fan , the state recognition is carried out according to the fuzzy symptom of the fan fault and fuzzy reasoning is carried out , so that the diagnosis is made . The method overcomes the difficulty that the traditional diagnosis method needs to acquire accurate information , and the method overcomes the influence of the factors such as process parameters , temperature changes and the surrounding environment in the continuous operation process of the fan , and leads to the randomness and the ambiguity of the operation state and the fault appearance . By studying the mechanism of fan failure , it is determined that the vibration intensity and the frequency doubling peak are used as the symptom database of the fault to be detected . The fuzzy matrix is obtained by using the Matlab curve fitting method and the fuzzy distribution method . The fuzzy matrix is established by using the PDM2000 data acquisition analyzer developed by Dalian University of Technology . The fuzzy fault diagnosis is carried out by using the PDM2000 data acquisition analyzer developed by Dalian University of Science and Technology . In this paper , the fuzzy fault diagnosis system of the fan is developed by using C ++ language , the membership function and the fuzzy equation are solved , the self - learning function of the fuzzy matrix is realized , the fuzzy diagnosis matrix is corrected , and the adaptability and the accuracy of the fuzzy diagnosis matrix are gradually improved . This model is used to diagnose the induced draft fan and blower in a steel plant . After signal acquisition , data extraction , reference selection and diagnosis of the fuzzy diagnosis system , it is determined that the fan is normal and the blower is the crack fault of the rotating shaft . The shutdown is repaired , the diagnosis result is correct , and the practicability of the model is proved .
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3
【参考文献】
相关期刊论文 前10条
1 张远军;;风机故障机理及诊断方法[J];包钢科技;2009年04期
2 郑君;张冬泉;;故障诊断技术[J];电气时代;2008年05期
3 黄永东;;转子不平衡现象的分析[J];发电设备;2009年03期
4 刘朝山,张继华;油膜涡动和油膜振荡的特征频率[J];风机技术;2001年06期
5 王静;郭九梅;王胤龙;;离心压缩机转子弯曲故障分析[J];风机技术;2009年06期
6 扶名福;谢明祥;饶泓;;模糊聚类分析法在抽风机故障诊断中应用[J];工程力学;2007年S1期
7 汪光阳;周义莲;;风机振动故障诊断综述[J];安徽工业大学学报(自然科学版);2006年01期
8 王宇飞;谢永鹏;;旋转机械转子不平衡故障的诊断与分析[J];湖南工业职业技术学院学报;2009年05期
9 付波;周建中;彭兵;安学利;;固定式刚性联轴器不对中弯扭耦合振动特性[J];华中科技大学学报(自然科学版);2007年04期
10 崔保;;滑动轴承油膜涡动和油膜振荡的机理与诊断[J];机械工程师;2006年06期
,本文编号:1432975
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1432975.html