当前位置:主页 > 科技论文 > 机械论文 >

精密组件的平行度检测与修整技术研究

发布时间:2018-01-17 23:31

  本文关键词:精密组件的平行度检测与修整技术研究 出处:《大连理工大学》2012年硕士论文 论文类型:学位论文


  更多相关文章: 平行度测量 精密修整 定位面拟合


【摘要】:精密机电产品通常包含多个机械零件,为了实现产品的批量生产,并降低工人的劳动强度,各国相继开发出半自动、自动的装配系统。在零件加工精度和装配系统装配精度的综合影响下,装配完成后组件的位置精度可能达不到预期要求。精密修整作为提高零件或组件形状精度和位置精度的技术手段越来越受到人们重视,在精密器件制造中有着广泛的应用。 本文围绕某一精密组件两个平面的平行度误差展开研究。分析发现,组件有平行度要求的两面之一是一内凹平面,该平面不能进行再加工,同时无法直接作为后续加工的定位支撑面,在对两种平行度修整方案和修整方式详细比较的基础上,基于简单化和实用化考虑,最终选用基于定位面拟合和精密铣削去除的平行度修整法。 搭建测量加工装置,为实现组件的可靠装夹以及精确去除,考虑到空间限制、修整效率和结构简单等实际作业因素,设计了集成调整和定位的专用修整夹具,由定位模块、锁紧机构、微调模块、中间连接板和底座五部分组成,在实现组件可靠定位的同时可将三个小安装面调出理想高度差。修整过程包括平行度测量、去除量求解、被加工面精密调整和精密加工四个步骤。测量组件上的四个点,利用最小二乘法拟合出平面;测量被加工件上的三个小安装面并获得其到拟合平面的距离,计算后分别获得三个小安装面的去除量。利用夹具上的微调模块对被加工件进行调整,最后进行精密铣削加工。 为提高平行度修整精度,同时避免组件受力过大受损,采用有限元分析方法对被修整组件在所搭建实验设备上的锁紧和变形进行了研究。为简化修整过程,将组件修整过程中的计算采用VC++编程实现。分析被加工材料的特性,合理选择加工刀具,对平行度超差的组件进行修整实验,修整后组件两面的平行度误差满足要求,验证了定位面拟合的平行度修整方案的可行性。最后,分析实验过程中可能存在的误差,寻求误差减小方法,以提高修整精度。
[Abstract]:Precision electromechanical products usually contain many mechanical parts. In order to realize the batch production of products and reduce the labor intensity of workers, many countries have developed semi-automatic. Automatic assembly system. Under the influence of machining accuracy of parts and assembly accuracy of assembly system. The position accuracy of assembly after assembly may not reach the expected requirements. Precision dressing as a technical means to improve the shape accuracy and position accuracy of parts or components has been paid more and more attention. It is widely used in precision device manufacturing. In this paper, the parallelism error of two planes of a precise component is studied. It is found that one of the two sides of the assembly with parallelism requirement is an inner concave plane, which can not be reprocessed. At the same time, it can not be directly used as the positioning support surface for subsequent processing. On the basis of comparing the two parallel dressing schemes and dressing methods in detail, it is based on the consideration of simplification and practicality. Finally, the parallelism dressing method based on positioning surface fitting and precision milling removal is selected. In order to realize the reliable clamping and accurate removal of the assembly, considering the practical operation factors such as space limitation, trimming efficiency and simple structure, a special dressing fixture for integrated adjustment and positioning was designed. It consists of five parts: positioning module, locking mechanism, fine-tuning module, intermediate connection plate and base. The three small mounting surfaces can be adjusted out of the ideal height difference while the components are reliably positioned. The trimming process includes parallelism measurement. The removal amount is solved, the precision adjustment of the machined surface and the four steps of precision machining are carried out. The four points on the measuring module are fitted out by the least square method. The three small mounting surfaces on the added workpiece are measured and the distance from the three small mounting surfaces to the fitting plane is obtained. The removal amount of the three small mounting surfaces is obtained respectively after calculation. The workpiece is adjusted by the fine-tuning module of the fixture. Finally, precision milling is carried out. In order to improve the accuracy of parallelism and avoid too much damage to the components, the locking and deformation of the trimmed components on the experimental equipment were studied by using the finite element analysis method in order to simplify the dressing process. The calculation of the component dressing process is realized by VC programming. The characteristics of the processed materials are analyzed, the cutting tools are reasonably selected, and the experiments are carried out on the components whose parallelism is too low. The parallelism error of the two sides of the component after dressing meets the requirements, which verifies the feasibility of the parallelism dressing scheme for the fitting of the positioning surface. Finally, the possible errors in the experiment process are analyzed, and the error reduction method is found. To improve the precision of dressing.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH161

【参考文献】

相关期刊论文 前10条

1 韩同鹏;李国平;沈杰;;基于压电陶瓷微位移执行器的精密定位技术研究[J];传感器与微系统;2010年02期

2 安晓刚 ,宋清;电化学机械光整加工技术的研究[J];电加工与模具;2002年04期

3 周景亮;林志熙;;面对面的平行度误差数据处理[J];工具技术;2010年06期

4 王清明,卢泽生,梁迎春,董申;压电陶瓷微动机构在超精密车削中的应用[J];工具技术;1999年05期

5 孙建春;盛光敏;陈登明;周安若;朱光俊;;H_2气氛保护热处理1J50组织结构与性能的研究[J];功能材料;2010年03期

6 李圣怡,黄长征,王贵林;微位移机构研究[J];航空精密制造技术;2000年04期

7 周忆,米林,廖强,梁德沛;基于超声研磨的超精密加工[J];航空精密制造技术;2003年01期

8 郭厚q;游全根;曹爱文;;基于切削力的铣削加工误差数学模型[J];机床与液压;2007年12期

9 张磊;刘莹;;基于柔性铰链的微位移机构设计[J];机床与液压;2010年05期

10 荣烈润;;现代特种加工技术的进展[J];机电一体化;2007年04期

相关博士学位论文 前1条

1 朱铮涛;基于计算机视觉图像精密测量的关键技术研究[D];华南理工大学;2004年

相关硕士学位论文 前4条

1 徐宁;电化学机械复合光整加工及表面特性研究[D];中国农业大学;2002年

2 董海云;小锥度激光打孔技术及工艺研究[D];长春理工大学;2004年

3 王成群;基于机器视觉的音膜同心度测量系统的研究与设计[D];广东工业大学;2008年

4 赵军英;高压磨料水射流光整加工技术的理论分析与数值模拟研究[D];太原理工大学;2008年



本文编号:1438484

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1438484.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0ff26***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com