高压共轨系统高压泵结构参数对轨压波动影响的仿真研究
本文关键词: 高压共轨 高压泵 轨压波动 出处:《吉林大学》2012年硕士论文 论文类型:学位论文
【摘要】:本文旨在研究高压泵的结构参数的调整对于轨压波动影响,选取博世CP1H型高压泵为基础,利用GT SUITE软件组中的FUEL软件建立高压泵模型,,在与广汽吉奥公司的合作的项目平台中获取稳定工况下高压共轨系统的压力波动脉谱图,对模型进行验证。 在经过深入分析博世CP1H型高压泵以及博世共轨管的结构特点及工作原理后,确定高压油泵中能够对轨压波动产生比较明显的影响的一些结构参数:进油阀弹簧刚度、弹簧预紧力、球阀的质量,柱塞直径。给模型中高压油泵的主要结构参数设定不同值,用该模型仿真计算得出不同的轨压波动曲线,对比分析不同的参数对轨压波动的影响。本文经过对比不同结构参数设定下的轨压波动曲线,得出一些结论: 进油阀阀体质量较大时,轨压波动幅度较小;进油阀弹簧预紧力取较大值时轨压相对稳定;进油阀弹簧刚度太小,在柱塞腔吸油初期阀体两端压差较小的时候,进油阀容易出现多次开启关闭现象,影响供油压力的稳定性。而且会对阀座产生冲击影响寿命。 相对于进油阀结构参数,供油相位、柱塞直径和出油阀的结构参数的变动对轨压波动的影响更加明显。 柱塞直径设定较小值时,循环供油量减少,每循环喷油系统的要求达到的喷油量和控制室消耗的一部分油量高压泵无法完全满足,高压油轨的平均压力已经不能够满足保持轨压稳定。 为了保证各缸循环喷油量的均匀性,匹配高压泵 发动机转速比时要保证供油次数和气缸数一致。 凸轮转角中供油起始点滞后20度时轨压波动幅度明显减小,而且各缸喷油时刻附近的波动幅度和频率都很一致,保持了良好的均匀性。 为了有效降低系统中的压力波动,可选定较小的出油阀弹簧预紧力,以保证出油阀稳定开启。
[Abstract]:The purpose of this paper is to study the influence of structural parameters of high pressure pump on rail pressure fluctuation and select Bosch CP1H high pressure pump as the foundation. The high pressure pump model was established by using the FUEL software of GT SUITE software group, and the pressure wave arterial spectrum of the high pressure common rail system under steady working condition was obtained in the project platform of the cooperation with Guang Auto Gior Company. The model is validated. After in-depth analysis of Bosch CP1H high pressure pump and Bosch common rail tube structure characteristics and working principle. Determine some structural parameters in high pressure oil pump which can have obvious influence on rail pressure fluctuation: spring stiffness, spring pretightening force, ball valve quality. Plunger diameters. The main structural parameters of the high pressure oil pump in the model are set different values, using this model to calculate the different rail pressure fluctuation curve. The influence of different parameters on rail pressure fluctuation is analyzed. By comparing the rail pressure fluctuation curves with different structural parameters, some conclusions are drawn. When the mass of intake valve body is large, the fluctuation of rail pressure is smaller; The rail pressure is relatively stable when the pre-tightening force of the oil inlet valve spring is taken as a large value. Oil inlet valve spring stiffness is too small, in the initial plunger cavity suction valve body pressure difference between the two ends of the small, oil intake valve prone to multiple open and close phenomenon. Affect the stability of oil supply pressure. And impact on the seat impact life. Compared with the structure parameters of the inlet valve, the oil supply phase, the diameter of the plunger and the structural parameters of the oil delivery valve have more obvious effects on the fluctuation of rail pressure. When the plunger diameter is set at a small value, the circulating fuel supply will be reduced, and the fuel injection quantity and a portion of the fuel consumption consumed by the control room will not be fully satisfied with the requirements of the fuel injection system per cycle. The average pressure of the high pressure oil rail can no longer be satisfied to maintain the stability of the rail pressure. In order to ensure the uniformity of fuel injection rate in each cylinder cycle, the number of times of fuel supply and the number of cylinders should be consistent when matching the rotational speed ratio of high pressure pump. When the starting point of fuel supply in the cam angle lags 20 degrees, the fluctuation range of rail pressure is obviously reduced, and the fluctuation amplitude and frequency near the injection time of each cylinder are very consistent, which keeps good uniformity. In order to effectively reduce the pressure fluctuation in the system, a smaller spring preload can be selected to ensure the stable opening of the oil delivery valve.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH38
【参考文献】
相关期刊论文 前10条
1 于建国;梁超;;变容变压条件下电控柴油机共轨管长径比对压力波动的影响[J];车辆与动力技术;2008年02期
2 王洪荣;张幽彤;王军;丁晓亮;;高性能共轨柴油机电控单元的开发研究[J];北京理工大学学报;2007年07期
3 王洪荣;张幽彤;王军;刘练达;;共轨柴油机轨压控制研究[J];北京理工大学学报;2008年09期
4 朱睿;国产柴油车期待“现代”技术改造[J];北京汽车;2003年03期
5 宋军,乔信起,黄震,李书泽,王岩;柴油机电控喷射系统发展现状[J];车用发动机;2003年03期
6 黄铁雄;高世伦;;柴油机高压共轨系统自适应模糊滑模控制[J];车用发动机;2008年04期
7 张有;电控高压共轨低排放D114柴油机的研制[J];柴油机设计与制造;2005年02期
8 杨世友,顾宏中,郭中朝;柴油机涡轮增压系统研究现状与进展[J];柴油机;2001年04期
9 王好战,肖文雍,冒晓建,杨林,卓斌;车用电控柴油机共轨油压模拟及其控制策略分析[J];柴油机;2002年05期
10 宋国民,刘学瑜;基于参数自调整PID控制的高压共轨数字调压系统[J];柴油机;2002年05期
相关硕士学位论文 前4条
1 刘夏;高压共轨柴油机喷油规律和喷油器响应特性研究[D];吉林大学;2011年
2 郭建波;高压共轨柴油机电控燃油喷射系统及开发环境的研究[D];浙江大学;2002年
3 吴楚;柴油机高压共轨系统高压供油泵的实验仿真研究[D];江南大学;2007年
4 李刚;高压共轨系统高压泵的设计开发[D];上海交通大学;2006年
本文编号:1462178
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1462178.html