液力偶合器流场仿真分析方法及其力矩系数研究
本文关键词: 液力偶合器 流场仿真 力矩系数修正 原始特性 试验研究 出处:《中国舰船研究院》2011年硕士论文 论文类型:学位论文
【摘要】:液力偶合器是一种利用液体动能进行能量传递的液力传动机械。其具有柔性传动、减缓冲击、轻载启动、过载保护、隔离扭振、协调多动力机均衡驱动等优异功能,广泛应用于船舶、冶金、发电、矿山等重型工业。 本文通过理论分析和仿真技术研究,建立了液力偶合器流场仿真分析方法,对液力偶合器力矩系数λ_B进行理论研究,结合流场仿真结果,归纳总结λ_B系数相对于转速n_B的变化规律,并应用JO65XR型液力偶合器进行了试验验证。主要研究内容如下。 (1)液力偶合器流场仿真分析方法。首先研究了现今流场仿真分析技术,包括湍流模型、网格生成技术等,形成液力偶合器流场仿真分析方法指导流程。然后对液力偶合器的工况和流场做出一定的假设,以方便几何建模。结合STAR-CCM+软件,深入研究液力偶合器三维流场建模及仿真的方法与过程,主要包括几何模型、计算网格模型、物理模型设置、边界条件、收敛准则、结果显示等。最后基于液力偶合器额定工况下流场的仿真结果,本文分析了液力偶合器整体壁面、轴面、Interface面的流场特性,揭示了流场速度和压力变化的分布情况,对其内部流场特性及生成原因进行了详细分析。 本文应用JO65XR型液力偶合器进行验证试验,绘制了不同滑差下的仿真曲线和试验曲线,两条曲线吻合一致,额定工况下仿真值与试验值的平均误差为6.53%,最大误差为10.95%,验证了本文提出的液力偶合器流场仿真分析方法是可行的。 (2)液力偶合器力矩系数λ_B的修正。根据多工况流场仿真分析的结果——当滑差i不变时力矩系数λ_B会随着转速n_B不同而变化,本文对液力偶合器力矩系数λ_B进行理论研究,获得液力偶合器λ_B = f ( i ,Re)或λ_B = f ( i ,n_B)的函数关系,并进一步说明力矩系数λ_B并非如通常认识的那样仅和滑差i有关,而是受到滑差i和雷诺数Re(或者转速n_B )的共同影响。然后进行液力偶合器多工况输出扭矩仿真,归纳总结力矩系数λ_B与转速n_B的规律,对λ_B提出一套与n_B相关的修正系数,使其满足λB = f ( i ,n_B)的要求。 根据试验结果,绘制了试验曲线、修正曲线和未修正曲线,修正曲线明显比未修正曲线更接近试验曲线,修正系数能够反应出转速n_B对力矩系数λ_B的影响趋势,修正前平均误差为10.36%,最大误差为15.93%,而修正后平均误差降为6.08%,最大误差降为10.88%。从而验证了液力偶合器λ_B系数修正理论的正确性。 本文的液力偶合器流场仿真分析方法应用于液力偶合器设计之中,可减少研制样机及试验的工作量,达到省时和省力的目的。本文对液力偶合器力矩系数λ_B的修正,进一步提高了对液力偶合器特性的认识,对提高其设计和控制精度具有指导作用和实用价值。
[Abstract]:Hydraulic coupler is a kind of hydraulic transmission machinery which uses liquid kinetic energy to transfer energy. It has flexible transmission, slow impact, light load start, overload protection and isolation of torsional vibration. It is widely used in heavy industry, such as ship, metallurgy, power generation, mining and so on. Based on the theoretical analysis and simulation technology, a simulation analysis method for fluid field of hydraulic coupling is established in this paper. The torque coefficient 位 B of hydraulic coupling is studied theoretically, and combined with the result of flow field simulation. The variation law of 位 _ S _ B coefficient relative to rotational speed _ n _ B is summarized and tested with JO65XR type hydraulic coupler. The main contents are as follows. Firstly, the current flow field simulation and analysis techniques, including turbulence model, mesh generation technology and so on, are studied. The flow field simulation analysis method of hydraulic coupling is formed to guide the flow. Then the working conditions and flow field of hydraulic coupling are hypothesized in order to facilitate geometric modeling. Combined with STAR-CCM software. The methods and processes of 3D flow field modeling and simulation of hydraulic coupling are deeply studied, including geometric model, computational grid model, physical model setting, boundary condition and convergence criterion. The results show that. Finally, based on the simulation results of the flow field under the rated working conditions of the hydraulic coupling, the flow field characteristics of the integral wall and axial surface of the hydraulic coupling are analyzed in this paper. The distribution of the velocity and pressure variation of the flow field is revealed, and the characteristics of the internal flow field and the causes of its formation are analyzed in detail. In this paper, the JO65XR type hydraulic coupling is used to carry out the verification test, and the simulation curve and the test curve under different slippage are drawn, and the two curves are consistent with each other. The average error between the simulated value and the experimental value is 6.53 and the maximum error is 10.95 under rated working conditions. The method proposed in this paper is proved to be feasible. 2) Modification of torque coefficient 位 B of hydraulic coupling. According to the result of simulation analysis of multi-condition flow field, the torque coefficient 位 B will change with the speed nb when the slip difference I is constant. In this paper, the torque coefficient 位 _ s _ B of hydraulic couplings is studied theoretically, and the functional relations of 位 _ s _ p _ B = f (I _ Ree) or 位 _ s _ B = f (I / n _ B) are obtained. Furthermore, it is shown that moment coefficient 位 B is not only related to slip I as is generally known. It is influenced by slip I and Reynolds number Re. then the torque output simulation of hydraulic coupling is carried out, and the law of torque coefficient 位 B and rotational speed NSP B is summarized. In this paper, a set of correction coefficients related to 位 _ s _ B are presented to satisfy the requirements of 位 _ B = f (I / n _ s _ B). According to the test results, the test curve, the modified curve and the uncorrected curve are drawn. The modified curve is more close to the test curve than the uncorrected curve. The correction coefficient can reflect the influence trend of the speed NSP B on the torque coefficient 位 B. The average error before the correction is 10.36 and the maximum error is 15.93%. The average error is reduced to 6.08 and the maximum error is reduced to 10.88, which verifies the correctness of the modified theory of 位 _ B coefficient of hydraulic coupling. In this paper, the flow field simulation analysis method of hydraulic coupling is applied to the design of hydraulic coupling, which can reduce the workload of developing prototype and testing. In order to save time and effort, the torque coefficient 位 B of hydraulic coupler is modified in this paper, which further improves the understanding of the characteristics of hydraulic coupler. It has guiding function and practical value to improve its design and control precision.
【学位授予单位】:中国舰船研究院
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH137.331
【参考文献】
相关期刊论文 前8条
1 冀海;周广明;马晓枫;秦绪情;唐守生;;液力偶合器精确控制下原始特性修正[J];车辆与动力技术;2009年03期
2 闫国军;董泳;吴剑威;;液力变矩器部分充液特性研究及应用[J];工程机械;2007年05期
3 杨威嵬;吴凡;虞俊;;液力偶合器流场的技术仿真[J];机械设计与研究;2009年02期
4 王永生,丁江明;液力偶合器通用外特性的数学建模[J];机械工程学报;2005年04期
5 田华,葛安林,马文星;液力变矩器的内流场数值分析[J];农业机械学报;2005年04期
6 何延东;马文星;刘春宝;;液力偶合器部分充液流场数值模拟与特性计算[J];农业机械学报;2009年05期
7 过学迅,郑慕侨;液力变矩器流场研究的方法和进展[J];汽车工程;1995年03期
8 张扬军,陈乃祥,曹智鹏;流体机械粘性流场的数值模拟方法[J];清华大学学报(自然科学版);1997年03期
相关博士学位论文 前1条
1 何延东;基于CFD的大功率调速型液力偶合器设计[D];吉林大学;2009年
相关硕士学位论文 前9条
1 齐迎春;数值模拟技术在液力变矩器流场分析中的应用[D];吉林大学;2004年
2 余鑫;汽车液力变矩器内流场的数值分析[D];吉林大学;2005年
3 李雪松;车辆液力减速器三维流场分析与特性计算[D];吉林大学;2006年
4 宋月兰;多层桨搅拌槽内气—液两相流的数值模拟[D];北京化工大学;2006年
5 许涛;液力变矩器三维流场仿真计算[D];武汉理工大学;2006年
6 吴开府;液力偶合器流场数值模拟及其分离流动控制研究[D];吉林大学;2007年
7 吴波;液力变矩器的三维流场仿真计算[D];吉林大学;2008年
8 陈见;基于三维流动计算的液力减速器性能仿真研究[D];武汉理工大学;2008年
9 王永权;液力偶合器叶轮与流体的流固耦合模拟与分析[D];吉林大学;2009年
,本文编号:1466018
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1466018.html