考虑圆度误差对滑动轴承转子系统摩擦功率损耗的影响
本文关键词: 滑动轴承转子系统 圆度误差 稳定性 摩擦功率损耗 出处:《广西工学院》2012年硕士论文 论文类型:学位论文
【摘要】:滑动轴承转子系统的动力学特性以及摩擦功率损耗与系统的结构参数密切相关,目前有关滑动轴承转子系统动力学的研究大都以系统的名义尺寸进行,并未考虑制造误差对系统稳定性的影响。实际上滑动轴承结构参数的各种误差对转子系统是有影响的,而转子在加工过程中的制造误差也是客观存在的,因此考虑误差对转子系统稳定性影响以及摩擦功率损耗的影响研究很有必要。本文主要研究圆度误差对滑动轴承转子系统摩擦功率损耗的影响。 首先建立普通滑动轴承转子系统动力学模型,利用有限差分法求解雷诺方程,得到了油膜压力以及油膜承载力。介绍了滑动轴承转子系统轴心轨迹计算方法以及临界转速判定方法,根据计算的量纲一运行参数Op得到具备普遍性意义稳定性临界曲线,给出了滑动轴承转子系统的摩擦功率损耗曲线。然后,考虑轴承和转子的圆度误差形状分别是单凸台、椭圆、三凸台,将不同圆度误差的轴承和转子进行组合,得到9种圆度误差形状不同的滑动轴承转子系统,再考虑轴承和转子各有两种圆度误差度度,,最后得到36种圆度误差不同的滑动轴承转子系统。运用经过验证的理论,得到不同圆度误差的滑动轴承转子系统的稳定性临界曲线和摩擦功率损耗曲线,对不同圆度误差系统的两种曲线进行分析,得出相关结论。 为验证此理论分析结果的正确性,课题组专门搭建了滑动轴承转子系统实验台。实验台基于LabVIEW信号采集系统,可实现对转子系统转速、轴心轨迹、频谱及轴振振幅等信号的实时测量与保存。扭矩仪可以实时监测系统的扭矩、转速以及摩擦功率损耗。为了实验需要,同时加工了四根圆度误差不同的椭圆轴,以验证圆度误差对滑动轴承转子系统稳定性以及摩擦功率损耗的影响。论文的最后通过实验验证对理论结果进行验证,分析比较实验数据后认为,实验结果与理论计算结果相符,并对误差进行了分析。本文的研究结果可以为滑动轴承转子系统的误差控制、减少生产成本及降低损耗提供理论参考。
[Abstract]:The dynamic characteristics and friction power loss of sliding bearing rotor system are closely related to the structural parameters of the system. At present, most of the research on the rotor system dynamics of sliding bearing is based on the nominal size of the system. The effect of manufacturing error on the stability of the system is not considered. In fact, the errors of the structural parameters of sliding bearing have an effect on the rotor system, and the manufacturing error of the rotor in the process of machining is also objective. Therefore, it is necessary to study the effect of error on the stability of rotor system and the influence of friction power loss. In this paper, the effect of roundness error on friction power loss of sliding bearing rotor system is studied. Firstly, the rotor system dynamics model of plain bearing is established, and the Reynolds equation is solved by finite difference method. The oil film pressure and the bearing capacity of oil film are obtained. The calculation method of axis track and the method of determining critical speed of sliding bearing rotor system are introduced. According to the calculated dimensional-operation parameter Op, the critical curve of stability with universal meaning is obtained, and the friction power loss curve of the sliding bearing rotor system is given. Then, the friction power loss curve of the sliding bearing rotor system is given. Considering that the roundness error shapes of bearing and rotor are single convex, elliptical and triple convex respectively, the bearing and rotor with different roundness error are combined to obtain nine kinds of journal bearing rotor system with different roundness error shape. Considering that there are two kinds of roundness error degree of bearing and rotor, 36 kinds of sliding bearing rotor system with different roundness error are obtained. The stability critical curve and friction power loss curve of sliding bearing rotor system with different roundness errors are obtained. The two curves of different roundness error system are analyzed and the relevant conclusions are drawn. In order to verify the correctness of the theoretical analysis results, the team built a special sliding bearing rotor system experiment bench, based on the LabVIEW signal acquisition system, the rotor system speed can be realized. Real time measurement and preservation of axis locus, frequency spectrum and vibration amplitude. Torque meter can monitor system torque, rotational speed and friction power loss in real time. At the same time, four elliptical shafts with different roundness errors are machined to verify the influence of roundness error on the stability and friction power loss of sliding bearing rotor system. Finally, the theoretical results are verified by experiments. After analyzing and comparing the experimental data, it is concluded that the experimental results are consistent with the theoretical results, and the errors are analyzed. The research results in this paper can be used to control the errors of the sliding bearing rotor system. To reduce production costs and reduce losses to provide a theoretical reference.
【学位授予单位】:广西工学院
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH133.33
【参考文献】
相关期刊论文 前10条
1 赵三星,秦平,徐华,朱均;用线性和非线性油膜力分析轴承动力系统[J];兵工学报;2002年02期
2 刘宏业,夏新涛,李旭东;轴承磨削表面圆度误差的诊断与控制[J];轴承;2005年03期
3 宋飞;李济顺;刘永刚;;圆柱滚子轴承滚道圆度误差对旋转精度的影响[J];轴承;2011年05期
4 王文锋;郑锡伟;潘晓愚;;圆锥滚子轴承滚道面圆度误差的精密测量与分析[J];轴承;2011年10期
5 奚炳章;大型电机中圆柱表面摩擦损耗的探讨[J];大电机技术;1988年06期
6 夏新涛;张林;刘劲军;;圆锥滚子轴承振动因素分析的定性融合方法[J];哈尔滨轴承;2010年01期
7 焦映厚;李明章;陈照波;;不同油膜力模型下转子-圆柱轴承系统的动力学分析[J];哈尔滨工业大学学报;2007年01期
8 肖忠会;沈光琰;郑铁生;张文;;用瑞利-李兹法求解瞬时非稳态滑动轴承油膜力的新算法[J];计算力学学报;2005年06期
9 刘占生,迟鼎南,李锋,赵广;电磁轴承转子表面圆度误差对系统的影响[J];机械科学与技术;2005年09期
10 王晓力,温诗铸,桂长林;计入表面粗糙度效应的动载轴承的润滑分析[J];机械工程学报;2000年01期
相关博士学位论文 前1条
1 刘大全;考虑温粘热效应的滑动轴承非线性油膜力模型研究及其应用[D];复旦大学;2005年
本文编号:1486051
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1486051.html