当前位置:主页 > 科技论文 > 机械论文 >

基于遗传神经网络的旋转机械故障预测方法研究

发布时间:2018-02-24 17:21

  本文关键词: 遗传算法 BP神经网络 磨损 预测 出处:《计算机测量与控制》2016年02期  论文类型:期刊论文


【摘要】:许多大型旋转机械运行工况恶劣,非平稳、非线性特征明显,以及各种突发性、偶然性因素的影响,给基于振动信号处理的状态预测和状态维护分析带来困难;神经网络以其强大的处理非线性系统的能力在故障预测中得到广泛的应用,但由于其在追求高精度训练目标时易陷入局部极值,且收敛速度慢甚至发散;针对这个问题,提出了采用遗传算法对神经网络连接权值和阈值进行优化,这样不仅发挥了神经网络广泛的映射特性也使遗传算法的全局搜索优势尽显无疑;通过组合这两种算法,在提升网络学习的准确度方面,优点尤其突出,最终提高对旋转机械故障预测和寿命估计的性能,这在某环境模拟试验系统动力风机的轴承磨损故障预测中得到了验证。
[Abstract]:It is difficult to predict and analyze the state of large rotating machinery based on vibration signal processing due to its bad operating conditions, non-stationary, obvious nonlinear characteristics, and the influence of various sudden and accidental factors. Neural network is widely used in fault prediction because of its powerful ability to deal with nonlinear systems, but it is easy to fall into local extremum when pursuing high precision training target, and the convergence speed is slow or even divergent. In this paper, genetic algorithm is proposed to optimize the weights and thresholds of neural networks, which not only give full play to the extensive mapping characteristics of neural networks, but also make the global search advantage of genetic algorithms clear. In the aspect of improving the accuracy of network learning, the advantages are especially outstanding, and the performance of fault prediction and life estimation of rotating machinery is improved, which is verified in the bearing wear fault prediction of a power fan in an environmental simulation test system.
【作者单位】: 西北工业大学动力与能源学院;中国华阴兵器试验中心环境模拟室;
【分类号】:TP183;TH17

【相似文献】

相关期刊论文 前10条

1 王凡,孟立凡;关于使用神经网络推定操作者疲劳的研究[J];人类工效学;2004年03期

2 常国任;李仁松;沈医文;刘钢;;基于神经网络的直升机舰面系统效能评估[J];舰船电子工程;2007年03期

3 陈俊;;神经网络的应用与展望[J];佛山科学技术学院学报(自然科学版);2009年05期

4 许万增;;神经网络的研究及其应用[J];国际技术经济研究学报;1990年01期

5 张军华;神经网络技术及其在军用系统中的应用[J];现代防御技术;1992年04期

6 雷明,李作清,陈志祥,吴雅,杨叔子;神经网络在预报控制中的应用[J];机床;1993年11期

7 靳蕃;神经网络及其在铁道科技中应用的探讨[J];铁道学报;1993年02期

8 宋玉华,,王启霞;神经网络诊断──神经网络在自动化领域里的应用[J];中国仪器仪表;1994年03期

9 魏铭炎;国内外神经网络技术的研究与应用概况[J];电机电器技术;1995年04期

10 王中贤,钱颂迪;神经网络法在经济管理中的应用[J];航天工业管理;1995年04期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 曾U喺

本文编号:1531079


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1531079.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户410f2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com