桥式起重机金属结构的轻量化设计研究
本文选题:模态分析 切入点:静态分析 出处:《南京理工大学》2012年硕士论文 论文类型:学位论文
【摘要】:本文基于现代设计方法中的有限单元法和结构优化设计方法,以某50t-31.5m桥式起重机为研究对象,完成了多种工况下材料分别为Q235和Q345的桥式起重机桥架的轻量化设计研究。 首先介绍了起重机的研究现状和CAE技术的在起重机行业的应用现状,深入研究了有限元法的理论基础及有限元分析软件HyperWorks。在第三章详细描述了此桥式起重机的金属结构并建立其几何模型,此外,运用前处理软件HyperMesh建立了起重机桥架的有限元模型,对有限元建模过程进行了详细阐述。在第四章分别对桥架的整个有限元模型和半个有限元模型进行了模态分析和静态分析,分析计算结果表明此桥式起重机桥架的结构性能的安全系数过大还存在很大的优化空间,因此有必要对其进行结构轻量化设计。在第五章为了验证有限元模型及其计算结果的准确性,采用解析法对桥式起重机的主梁进行静力学理论计算,其结果与有限元计算结果相当吻合,确保了有限元计算结果的可信度。 本文在第六章深入研究了各种结构优化设计方法和流程,及Optistruct中的结构优化方法,并分别对材料为Q235和Q345的桥式起重机桥架结构进行多种工况下的形状优化、尺寸优化、拓扑优化以及综合优化,此外,还对主梁进行了板厚变截面优化设计和鱼腹梁变截面优化设计。首先建立桥架结构的优化设计数学模型,各个优化设计的优化模型虽有所区别,但最终目标都是减少起重机桥架的自重,实现轻量化设计的目的。通过本文的研究表明采用结构优化方法进行桥架设计可以在满足起重机强度刚度的设计要求下实现结构轻量化设计,效果显著。将材料分别为Q235和Q345的桥架的优化结果进行对比,发现只提高材料的强度,桥式起重机的结构综合性能没有明显改进,必须同时提高材料的强度和刚度,才能得到更大的优化空间,使结构优化更有意义。 论文研究提高了起重机主梁结构的设计水平,使得起重机箱形梁结构设计更加合理,对起重机桥架的结构设计具有一定的指导意义和参考价值。
[Abstract]:Based on the finite element method and structural optimization design method in modern design method, this paper takes a 50t-31.5m bridge crane as the research object, and completes the lightweight design of bridge crane with Q235 and Q345 materials under various working conditions. Firstly, the research status of crane and the application of CAE technology in crane industry are introduced. The theoretical basis of finite element method and finite element analysis software HyperWorks.In the third chapter, the metal structure of the bridge crane is described in detail and its geometric model is established. The finite element model of crane bridge is established by using pre-processing software HyperMesh, and the process of finite element modeling is described in detail. In chapter 4th, modal analysis and static analysis of the whole finite element model and half finite element model of bridge frame are carried out, respectively. The results of analysis and calculation show that there is still a large space for optimization of the safety factor of the bridge frame of the bridge crane. Therefore, it is necessary to carry out structural lightweight design. In Chapter 5th, in order to verify the accuracy of the finite element model and its calculation results, an analytical method is used to calculate the static theory of the main girder of a bridge crane. The results are in good agreement with the results of finite element calculation, which ensures the reliability of the results. In Chapter 6th, various structural optimization methods and processes, and structural optimization methods in Optistruct are studied, and the shape and size optimization of bridge crane bridge structure with Q235 and Q345 are carried out under various working conditions, respectively. In addition, the optimization design of the main beam with variable section thickness and the variable section of the fish-web beam is carried out. Firstly, the mathematical model of the optimal design of the bridge frame structure is established, and the optimization models of each optimization design are different. But the ultimate goal is to reduce the weight of the crane's bridge, The aim of lightweight design is realized. The research in this paper shows that the structure lightweight design can be realized by adopting the structural optimization method to design the bridge under the requirements of the crane strength and stiffness. The results show that the strength of the bridge crane can only be increased, and the comprehensive performance of the bridge crane structure is not improved obviously, so the strength and stiffness of the bridge crane must be improved simultaneously, and the optimization results of the bridge frame with the material Q235 and Q345 are compared, and it is found that the strength of the bridge crane can only be improved. Only then can we get more optimization space and make the structure optimization more meaningful. In this paper, the design level of crane main girder structure is improved, and the design of crane box girder structure is more reasonable, which has certain guiding significance and reference value for crane bridge frame structure design.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH215
【参考文献】
相关期刊论文 前10条
1 宁朝阳;周华祥;;箱形主梁结构优化设计[J];长沙交通学院学报;2007年02期
2 余启志;陈丹晔;陈燕;;车身有限元与试验模态分析比较[J];东华大学学报(自然科学版);2011年04期
3 陈琪;高建和;吴宏祥;徐长奎;;数控转塔冲床机身模态分析与优化设计[J];锻压装备与制造技术;2011年04期
4 商广泰,钟文乐,蒋凤昌;基于ANSYS分析的钢梁优化设计[J];工程建设与设计;2005年03期
5 邓宏光;白天翔;盛言忠;游思坤;;基于有限元分析的单梁桥式起重机优化设计[J];钢结构;2009年02期
6 阳云华,金光振;桥式起重机三维有限元分析[J];湖北工学院学报;2003年02期
7 陆大明;;起重机械国际国内标准的现状和发展趋势[J];建设机械技术与管理;2005年12期
8 张志鑫;;ANSYS在桁架结构门机主梁优化设计中的应用[J];建设机械技术与管理;2009年08期
9 王小明;卢志强;;国内外大型起重机的研究现状及发展趋势[J];机电产品开发与创新;2009年02期
10 陆大明;;我国起重机行业发展对策及形势分析[J];机械工业标准化与质量;2009年08期
相关硕士学位论文 前10条
1 闫利利;起重机箱形梁的拓扑优化研究[D];郑州大学;2010年
2 薛盼;汽车起重机臂架结构分析与优化设计研究[D];兰州理工大学;2011年
3 刘云峰;桥式起重机箱形主梁腹板新型结构研究[D];昆明理工大学;2001年
4 徐新辉;基于ANSYS分析的龙门起重机箱型主梁优化设计[D];武汉理工大学;2005年
5 程丽珠;桥式起重机主梁结构分析和优化设计[D];吉林大学;2006年
6 李凌飞;基于变密度法的结构拓扑优化研究[D];吉林大学;2007年
7 禹海燕;桥式起重机空腹式箱形主梁的有限元分析[D];太原科技大学;2008年
8 李丽娜;单梁龙门起重机结构分析及优化[D];武汉理工大学;2009年
9 李博;基于HyperWorks的某雷达零部件的拓扑优化设计[D];合肥工业大学;2009年
10 赵超凡;20t龙门起重机箱形主梁力学分析及优化设计[D];兰州理工大学;2009年
,本文编号:1603229
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1603229.html