HT25J型装载机电液线控转向系统的研究
本文选题:装载机 切入点:电液转向 出处:《杭州电子科技大学》2012年硕士论文 论文类型:学位论文
【摘要】:装载机转向系统是装载机重要的构成系统之一,转向系统的性能的好坏直接影响装载机作业效率、安全性和驾驶员劳动强度。 本文依托国家自然基金“面向复杂产品全生命周期的多领域统一建模及仿真优化方法”和浙江省科技厅重大专项“多功能物流装备多领域优化设计技术研究及平台开发”,针对HT25J型装载机原有的全液压转向系统中存在的转向不轻便、灵敏度不可调、作业时效率低等问题,在借鉴参考国内外相关研究的基础上,设计了一种由比例减压阀来控制流量放大阀这一电液线控转向系统,并对该系统进行了数学建模、控制系统设计仿真、转向液压系统AMESim仿真分析、转向机构铰接点优化及转向系统MATLAB GUI界面的开发实现,具体包括以下几部分内容: 1.将电液比例控制技术应用于装载机转向系统中,设计了电液比例阀来控制流量放大阀这一线控转向系统的方案;而后通过分析放大阀的静、动态特性,建立其数学模型。 2.采用自适应模糊PID控制方法建立模糊自适应PID控制器,并在Matlab/Simulink中进行仿真,得到系统在无控制器控制、PID控制和模糊自适应PID控制三种情况下系统对阶跃信号的响应,通过对比得到自适应模糊PID控制具有较高的控制精度,较小的超调量和较快的响应速度,同时稳态性能出色,鲁棒性强。 3.通过对转向系统原理构造分析,在AEMSim中选择合适的子模型,建立电液转向系统中各部件的物理模型,并将各个元件连接起来,搭建了系统的总体仿真模型。而后在AMESim中对各个元件进行参数化设置,并分别对主阀、分流阀等进行仿真分析,得到在不同条件下各元件的特性对整个系统性能的影响;并对系统进行总体仿真,得到转向油缸的输出情况。 4.根据转向铰接机构的工作特性,建立转向机构的优化设计数学模型;应用蚁群算法对铰接点进行优化,得到行程差与转角、力臂差与转角在优化前后对比,以及在有无油缸通用约束情况下曲线的对比结果。通过对比优化前后结果,可以看出优化取得了明显的改进,提高了转向性能。 5.通过使用MATLAB GUIDE交互式组件布局功能设计出转向系统的参数计算界面、仿真界面和控制系统仿真界面,而后对界面中的各个控件进行回调程序的编译,从而实现GUI界面的功能。
[Abstract]:The steering system of loader is one of the important components of loader. The performance of steering system directly affects the efficiency, safety and labor intensity of loader. This paper relies on the National Natural Fund "Multi-domain Unified Modeling and Simulation Optimization method for the whole Life cycle of complex products" and the "Multi-functional Logistics equipment Multi-domain Optimization Design Technology Research" in Zhejiang Science and Technology Department. Platform development ", aimed at the HT25J loader in the original full hydraulic steering system, the steering is not portable, The sensitivity is not adjustable and the working efficiency is low. On the basis of referring to the relevant research at home and abroad, a proportional pressure reducing valve is designed to control the flow amplifying valve, which is an electro-hydraulic steering system, and the mathematical model of the system is established. Control system design simulation, steering hydraulic system AMESim simulation analysis, steering mechanism hinge point optimization and the development and realization of steering system MATLAB GUI interface, including the following parts:. 1. The electro-hydraulic proportional control technology is applied to the steering system of loader, and the scheme of electro-hydraulic proportional valve to control the flow amplification valve is designed, and the mathematical model is established by analyzing the static and dynamic characteristics of the amplifying valve. 2. The fuzzy adaptive PID controller is established by using adaptive fuzzy PID control method, and simulated in Matlab/Simulink. The response of the system to the step signal is obtained under the condition of controller free pid control and fuzzy adaptive PID control. By comparison, it is found that the adaptive fuzzy PID control has higher control accuracy, smaller overshoot and faster response speed, at the same time, the steady-state performance is excellent, and the robustness is strong. 3. By analyzing the principle of steering system, selecting the appropriate sub-model in AEMSim, establishing the physical model of each component in the electro-hydraulic steering system, and connecting each component together. The overall simulation model of the system is built, and then the parameterized setting of each component is carried out in AMESim, and the main valve and the shunt valve are simulated and analyzed respectively, and the effects of the characteristics of each component on the performance of the system are obtained under different conditions. The overall simulation of the system is carried out to get the output of the steering cylinder. 4. According to the working characteristics of the steering hinge mechanism, the mathematical model of the optimum design of the steering mechanism is established, the hinge point is optimized by the ant colony algorithm, the stroke difference and the rotation angle are obtained, and the force arm difference and the rotation angle are compared before and after the optimization. By comparing the results before and after the optimization, it can be seen that the optimization has achieved obvious improvement and improved the steering performance. 5. The parameter calculation interface, simulation interface and control system simulation interface of steering system are designed by using MATLAB GUIDE interactive component layout function. Then the callback program is compiled to realize the function of GUI interface.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH243
【参考文献】
相关期刊论文 前10条
1 黄宗益;轮式装载机的发展趋势[J];工程机械;1996年03期
2 秦家升 ,游善兰;AMESim软件的特征及其应用[J];工程机械;2004年12期
3 周林松;;装载机铰接转向机构铰点位置优化设计[J];工程机械;2007年07期
4 王国彪,,王岩松,马铸;轮式装载机的现状与技术发展[J];工程机械与维修;1998年03期
5 陈家丽;卡特彼勒新G系列轮式装载机[J];工程机械与维修;1998年10期
6 尹妍萍,李天石,王成都;比例减压阀数学模型辨识[J];机床与液压;2001年03期
7 刘海丽;李华聪;;液压机械系统建模仿真软件AMESim及其应用[J];机床与液压;2006年06期
8 魏佳广;孙铁;赵志海;;基于MATLAB GUI技术的离心泵装置特性绘制软件二次开发[J];计算技术与自动化;2010年03期
9 谭壮士,叶碧成;工程机械双油缸转向机构参数优化[J];建筑机械;2005年04期
10 许仰曾,刘忠华,张天福,潘骁,赵晓燕;液压转向器的电控与信息化发展趋势[J];流体传动与控制;2004年03期
相关会议论文 前1条
1 王宇彤;张雪峰;马越超;;基于MATLAB GUI的控制系统仿真平台设计[A];2007中国控制与决策学术年会论文集[C];2007年
相关博士学位论文 前3条
1 王同建;装载机线控转向技术研究[D];吉林大学;2006年
2 胡静波;装载机容错线控转向系统研究[D];吉林大学;2008年
3 周原;装载机线控转向智能控制方法研究[D];吉林大学;2010年
相关硕士学位论文 前2条
1 朱博;LG953装载机转向机构的优化设计及液压转向系统的分析[D];吉林大学;2009年
2 牛鸣岐;轮式铰接机器人动力转向控制系统的研究[D];吉林大学;2009年
本文编号:1650945
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1650945.html