冲压泵导叶出口与叶轮进口匹配关系的探讨与研究
发布时间:2018-03-31 18:19
本文选题:冲压泵 切入点:导叶 出处:《浙江工业大学》2011年硕士论文
【摘要】:离心泵是一种通用流体机械,广泛应用在工业生产和社会生活的各个领域。近年来,随着冲压离心泵的问世及发展,冲压泵已逐步取代了铸造泵。冲压泵采用冲压成型制造技术,不仅避免了铸造工艺的缺点,而且水力性能也优于传统铸造泵。如今,冲压泵已广泛应用于石油化工、油脂、食品、饮料、酿酒、医药卫生、电力、纺织、印染、环保、水处理、表面处理、电子机械、楼宇供水等行业。导叶是冲压泵级间重要的固定过流部件,它兼备吸水室和压水室的双重作用,不仅可以导流,还可以回收能量。本文采用MDP40-8-8冲压立式多级离心泵作为研究对象,采用CFD数值模拟方法,对其中的两级进行数值模拟,研究了导叶出口与叶轮进口的匹配关系,并选择了其中的一个方案进行了试验验证。本文的主要研究工作包括: (1)简要介绍和分析了导叶结构设计方法,查阅大量书籍及文献,整理并总结出了导叶出口直径、导叶进出口安放角以及导叶叶片数的相关计算公式,为文中改变导叶设计参数的方案作理论铺垫。 (2)简要介绍了Pro/ENGINEER三维制图软件,并应用Pro/E软件绘制了不同设计参数下导叶模型,再将不同导叶与其他过流部件分别组装组件,导入Gambit中采用非结构化网格进行分块网格划分,再将网格文件用Fluent软件写入后进行数值模拟计算,最后用CFD数据后处理技术对计算结果进行分析比较,得出了导叶与叶轮中流场的分布情况和内部流动特征。 (3)将各组数值模拟的数据进行分析,得出在改变导叶参数情况下,叶轮中流态的优劣情况,模拟结果表明,在改变导叶出口直径、导叶出口安放角、导叶叶片数以及导叶出口和叶轮进口距离等设计参数时,叶轮中的流态均受到了影响。 (4)选择数值模拟研究的其中一组方案进行试验研究,对方案中不同的导叶尺寸制造出样机,整理并分析试验数据,试验结果与数值模拟结果具有较高的相似性,证明了数值模拟的正确性和可靠性。
[Abstract]:Centrifugal pump is a kind of universal fluid machinery, which is widely used in various fields of industrial production and social life.In recent years, with the advent and development of centrifugal pump, stamping pump has gradually replaced the casting pump.The punching pump not only avoids the shortcoming of casting process, but also has better hydraulic performance than traditional casting pump.Nowadays, punching pump has been widely used in petrochemical, oil, food, beverage, wine, medicine and hygiene, electric power, textile, printing and dyeing, environmental protection, water treatment, surface treatment, electronic machinery, building water supply and so on.The guide vane is an important fixed flow unit between the stages of the punching pump. It has the dual functions of the suction chamber and the pressure chamber, which can not only guide the flow, but also recover the energy.In this paper, MDP40-8-8 stamping vertical multistage centrifugal pump is used as the research object, and CFD numerical simulation method is used to simulate the two stages of the pump, and the matching relationship between the guide vane outlet and the impeller inlet is studied.One of the schemes is selected for experimental verification.The main research work of this paper includes:This paper briefly introduces and analyzes the design method of guide vane structure, looks up a large number of books and documents, arranges and summarizes the relevant formulas for calculating the outlet diameter of guide vane, the inlet and outlet angle of guide vane, and the number of guide vane pieces.This paper provides a theoretical basis for changing the design parameters of guide vane.In this paper, the Pro/ENGINEER 3D drawing software is introduced briefly, and the guide vane model with different design parameters is drawn by using Pro/E software. Then the different guide vane and other overcurrent components are assembled separately, and the unstructured grid is used to divide the block mesh into Gambit.Then the grid file is written into Fluent software for numerical simulation. Finally, the results are analyzed and compared by using CFD data post-processing technology, and the distribution and internal flow characteristics of the flow field in the guide vane and impeller are obtained.3) by analyzing the data of each group of numerical simulation, the flow state in the impeller can be obtained by changing the parameters of the guide vane. The simulation results show that when the diameter of the outlet of the guide vane is changed, the angle of placement of the outlet of the guide vane is changed.The flow pattern in the impeller is affected by the design parameters such as the number of the guide vane and the distance between the outlet of the guide vane and the inlet of the impeller.4) A group of schemes of numerical simulation is selected for experimental study. A prototype is made for different guide vane sizes in the scheme, and the test data are sorted out and analyzed. The experimental results are similar to those of numerical simulation.The correctness and reliability of the numerical simulation are proved.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH311
【参考文献】
相关期刊论文 前10条
1 郑义;;QG400/300前置泵低负荷轴向窜动原因分析与处理[J];重庆电力高等专科学校学报;2010年01期
2 张学静;李德明;;多级导叶式离心泵导叶内部CFD计算分析[J];甘肃科学学报;2006年03期
3 王宏伟;于冠东;;轴向力的动态测量[J];机械管理开发;2007年05期
4 施卫东;张启华;陆伟刚;;新型井泵水力设计及内部流动的数值模拟[J];江苏大学学报(自然科学版);2006年06期
5 李栋,孙刚,乔志德;网格嵌套法在复杂流场计算中的应用[J];空气动力学学报;1998年02期
6 辛春宏;马伟;杨强;;关于冲压焊接多级离心泵水力设计的研究[J];临沂师范学院学报;2008年03期
7 虞之日;节段式多级泵导叶的环形空间及其设计[J];流体机械;1998年12期
8 钱家祥 ,童志成 ,陈文正;冲压泵的特点及其应用[J];流体机械;1999年08期
9 陈鱼;费振桃;蔡永雄;杨任;李文广;;输送清水时口环间隙对离心油泵性能的影响[J];流体机械;2006年01期
10 周天孝,白文;CFD多块网格生成新进展[J];力学进展;1999年03期
,本文编号:1691886
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1691886.html