基于LMD时频分析的旋转机械故障特征提取方法研究
本文选题:LMD分解 切入点:故障特征提取 出处:《燕山大学》2013年硕士论文
【摘要】:故障诊断是研究设备运行状态信息的变化,进而识别其运行状态的科学,随着现代化工业生产的不断发展,机械设备故障诊断技术得到了广泛的关注。在故障诊断中,,机械振动信号的故障特征提取是其研究的瓶颈,信号的处理和分析是特征提取最常用的方法。在实际应用中,机械振动信号都是非平稳的,对这类信号进行准确地分析和处理,是特征提取成功与否的关键所在。 近年来,信号处理的时频分析方法在机械故障诊断领域得到了迅速的发展。传统以Fourier变换为基础的信号分析方法在非平稳信号处理方面不能达到理想效果。本文重点研究基于局部均值分解(LMD)的时频分析方法及其在旋转机械故障特征提取方面的应用。 首先,研究瞬时频率、单分量和多分量信号、调频调幅信号的基本概念;分析LMD的基本原理及算法,并与经验模态分解(EMD)进行对比;阐述瞬时频率的求取方法:“直接法”、基于LMD的Hilbert变换法、能量算子解调法,分析各方法不足,在此基础上提出三点对称差分能量算子解调法,仿真验证该方法抑制LMD端点效应的有效性。 其次,分析噪声对LMD的影响,针对模态混叠,研究小波半软阈值去噪和LMD相关度降噪技术,将两者结合提出一种故障特征提取的方法,采用理论分析和机械故障信号相结合验证上述方法在改善时频分析性能方面的有效性。 最后,研究时频熵概念,提出局域时频熵理论,将其与LMD结合提取旋转机械故障特征,并进行了仿真实验的验证。
[Abstract]:Fault diagnosis is a science to study the change of equipment operation state information and then identify its running state. With the development of modern industrial production, the technology of mechanical equipment fault diagnosis has been paid more and more attention.In fault diagnosis, fault feature extraction of mechanical vibration signal is the bottleneck of its research, and signal processing and analysis is the most commonly used method of feature extraction.In practical applications, mechanical vibration signals are non-stationary, and accurate analysis and processing of these signals is the key to the success of feature extraction.In recent years, time-frequency analysis of signal processing has been rapidly developed in the field of mechanical fault diagnosis.The traditional signal analysis method based on Fourier transform can not achieve ideal results in non-stationary signal processing.This paper focuses on the time-frequency analysis method based on local mean decomposition (LMD) and its application in fault feature extraction of rotating machinery.First of all, the basic concepts of instantaneous frequency, single component and multi-component signals, frequency modulation signal are studied, the basic principle and algorithm of LMD are analyzed, and compared with empirical mode decomposition (EMD), the method of obtaining instantaneous frequency is described as "direct method".Based on LMD's Hilbert transform method and energy operator demodulation method, the deficiency of each method is analyzed. Based on this, a three-point symmetric differential energy operator demodulation method is proposed. The simulation results show that the proposed method is effective in suppressing the LMD endpoint effect.Secondly, the effect of noise on LMD is analyzed. Aiming at modal aliasing, wavelet semi-soft threshold de-noising and LMD correlation de-noising are studied, and a fault feature extraction method is proposed.Theoretical analysis and mechanical fault signal are used to verify the effectiveness of the proposed method in improving the performance of time-frequency analysis.Finally, the concept of time-frequency entropy is studied, and the local time-frequency entropy theory is proposed, which is combined with LMD to extract the fault features of rotating machinery.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TH165.3
【参考文献】
相关期刊论文 前10条
1 杨宇;杨丽湘;程军圣;;基于LMD和AR模型的转子系统故障诊断方法[J];湖南大学学报(自然科学版);2010年09期
2 罗一新;机械故障诊断技术趋向分析[J];机床与液压;2002年02期
3 刘卫兵;李志农;蒋静;易小兵;;局域均值分解方法在机械故障诊断中的应用[J];机床与液压;2011年01期
4 林京,屈梁生;信号时频熵及其在齿轮裂纹识别中的应用[J];机械传动;1998年02期
5 徐春生;王太勇;;基于EMD和ANFIS的自适应噪声消除研究[J];机械强度;2009年02期
6 程军圣;张亢;杨宇;;基于噪声辅助分析的总体局部均值分解方法[J];机械工程学报;2011年03期
7 明安波;褚福磊;张炜;;滚动轴承复合故障特征分离的小波-频谱自相关方法[J];机械工程学报;2013年03期
8 胡劲松;杨世锡;任达千;;基于样条的振动信号局域均值分解方法[J];数据采集与处理;2009年01期
9 姜洪开,何正嘉,段晨东,陈雪峰;自适应冗余第2代小波设计及齿轮箱故障特征提取[J];西安交通大学学报;2005年07期
10 于德介,张嵬,程军圣,杨宇;基于EMD的时频熵在齿轮故障诊断中的应用[J];振动与冲击;2005年05期
相关博士学位论文 前3条
1 鞠萍华;旋转机械早期故障特征提取的时频分析方法研究[D];重庆大学;2010年
2 孟宗;轧机传动系统扭振测量模型及实验研究[D];燕山大学;2008年
3 任达千;基于局域均值分解的旋转机械故障特征提取方法及系统研究[D];浙江大学;2008年
本文编号:1718336
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1718336.html