装载机自动铲装作业轨迹控制器研发
本文选题:装载机 + 自动铲装 ; 参考:《浙江大学》2011年硕士论文
【摘要】:装载机作为工程机械主流机种之一,应用面极广。而目前国内装载机的铲掘作业是由操作者操纵动臂手柄或铲斗手柄来完成的,而在手动控制的过程中,动臂的卸载位置和铲掘位置有很大的随机性,需要操作者对铲斗的位置姿态进行调整。由于装载机的作业形式是它围绕着作业对象在移动,而作业对象复杂多变,因此,就使得装载机的铲掘作业的效率很大程度上取决于操作者的经验、技能和意愿。也正是由于它的工作特点,操作人员需要反复地铲掘、运料,卸料及频繁地车辆换向,这使操作人员在工作中易疲劳,工作效率降低。为了减轻操作者的劳动强度,提高装载机的作业效率,以及消除因操作者铲掘作业的技术水平而造成的能源浪费,本文围绕装载机自动铲装作业轨迹控制问题,进行了以下研究工作: 1.根据装载机的工作装置机构特点,对工作装置进行了运动学分析,建立了装载机工作装置的简化模型并采用(D-H)法建立杆件坐标系,用矩阵变换法求出了铲斗相对于车架的位置变换矩阵,实现了铲掘轨迹由直角坐标空间向关节空间转换,通过求解装载机工作装置的几何关系,求得由关节空间向驱动空间转换;结合手动铲装作业过程的试验轨迹分析,结合提高作业效率和节能降耗两方面的要求进行自动铲装作业轨迹的理论分析和规划;运用Matlab工具进行曲线拟合,得到动臂油缸和转斗油缸的驱动方程。 2.搭建以电比例减压阀控制分配阀对装载机工作装置油缸进行位置控制的液压系统;根据动臂和铲斗油缸控制铲斗轨迹的特点,明确动臂和铲斗油缸运动控制算法;为实现作业效率和铲装的满斗率,制定了自动铲装过程中的智能减阻控制策略。 3.由于装载机工作条件恶劣的原因,采用高可靠性的英飞凌XC167为微处理器搭建了控制器的硬件平台满足工业方面的应用;设计了微处理器控制系统的电源模块电路、复位电路和看门狗监视复位电路、CPU外部时钟电路、外部EEPROM电路、输入输出10电路、CAN通信模块电路、PWM驱动模块电路、模拟信号采集处理模块电路、车速频率信号采集处理电路等主要电路,以及控制器的硬件抗干扰设计;动臂和铲斗油缸压力传感器、角度传感器的选型。并且采用Multisim电路仿真软件对模拟信号采集处理模电路和车速频率信号采集处理电路进行了仿真,验证了电路设计能满足设计性能要求。 4.根据自动铲装作业轨迹控制的控制策略和硬件设计方案,编写了自动铲装轨迹控制的主程序、系统初始化程序、插入物料和铲取物料操作控制子程序、模糊PID控制程序、读AD转换数据程序和EEPROM读写数据程序等主要程序的流程图;编写主要的初始化源程序、读取A/D转换数据的源程序;制定给电比例减压阀控制信号叠加颤振信号的方法;阐述单片机系统软件设计时所采取的软件抗干扰措施。
[Abstract]:Loaders as one of the mainstream construction machinery machinery, the application is very wide. At present, the shovel operation of the domestic loader is accomplished by the operator manipulating the arm handle or the bucket handle. However, in the process of manual control, the unloading position and the excavating position of the moving arm have great randomness. The operator is required to adjust the position and posture of the bucket. Because the form of the loader is moving around the operating object and the operation object is complex and changeable, the efficiency of the loader shovel operation depends to a great extent on the operator's experience, skill and willingness. It is precisely because of its working characteristics that the operator needs to repeatedly shovel, load, unload and commute the vehicle frequently, which makes the operator easily fatigue and reduce the working efficiency. In order to reduce the labor intensity of the operator, improve the working efficiency of the loader and eliminate the energy waste caused by the technical level of the operator's shovel, this paper focuses on the control of the track of the loader's automatic shovel. The following studies were carried out: 1. According to the working mechanism characteristics of the loader, the kinematics analysis of the working device is carried out, the simplified model of the working device of the loader is established, and the bar coordinate system is established by the method of D-H). The position transformation matrix of the bucket relative to the frame is obtained by using the matrix transformation method. The shovel track is transformed from the rectangular coordinate space to the joint space, and the geometric relationship of the loader working device is solved. The theoretical analysis and planning of automatic shovel operation trajectory are carried out according to the requirements of improving operation efficiency and saving energy and reducing consumption by analyzing the test track of manual shovel loading process and combining with the requirements of improving operation efficiency and saving energy and reducing consumption. The driving equations of the moving arm cylinder and the rotary bucket cylinder are obtained by using the curve fitting of Matlab tool. 2. A hydraulic system is set up to control the position of the oil cylinder of the loader working device with the electric proportional pressure reducing valve control distribution valve, according to the characteristics of the moving arm and the bucket oil cylinder to control the bucket trajectory, the motion control algorithm of the moving arm and bucket oil cylinder is defined. In order to realize the working efficiency and the full bucket rate of the shovel, the intelligent drag reduction control strategy in the process of automatic shoveling was formulated. 3. Because of the bad working conditions of the loader, the hardware platform of the controller is built by Infineon XC167 with high reliability to meet the industrial application, and the power module circuit of the microprocessor control system is designed. The reset circuit and watchdog monitor reset circuit include the external clock circuit, the external EEPROM circuit, the input and output 10 circuits, the can communication module circuit and the PWM driving module circuit, the analog signal acquisition and processing module circuit. The main circuits such as speed frequency signal acquisition and processing circuit and the hardware anti-interference design of the controller, the pressure sensor of the moving arm and bucket cylinder, the selection of the angle sensor. The analog signal acquisition and processing mode circuit and the speed frequency signal acquisition and processing circuit are simulated by using the Multisim circuit simulation software. It is verified that the circuit design can meet the design performance requirements. 4. According to the control strategy and hardware design scheme of automatic shovel operation trajectory control, the main program, system initialization program, insert material and shovel material operation control subroutine, fuzzy PID control program are compiled. Read the flow chart of the main programs such as AD conversion data program and EEPROM read and write data program, write the main initialization source program, read the A / D conversion data source program, formulate the method of superposition flutter signal of the control signal of proportional pressure relief valve. This paper expounds the software anti-interference measures adopted in the software design of single chip computer system.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH243
【参考文献】
相关期刊论文 前10条
1 姚践谦,李政菊,彭才忠;装载机铲斗插入铲取机理与阻力[J];工程机械;1993年03期
2 宋占伟,闻邦椿;装载机电子控制技术的发展及应用[J];工程机械;2000年10期
3 朱长亮;我国轮式装载机产品的发展[J];工程机械与维修;1999年08期
4 袁军;基于力控制的机器人装配作业实验研究[J];航天控制;1995年04期
5 吴永平;;现代装载机技术发展综述[J];建设机械技术与管理;2009年01期
6 杜克林,胡建元,黄心汉;机械手柔顺和刚度广义中心分析[J];机器人;1997年04期
7 殷跃红,尉忠信,朱剑英;机器人柔顺控制研究[J];机器人;1998年03期
8 尹朝忠;胡天友;;地下铲运机自动铲取最优轨迹的研究[J];金属矿山;2009年03期
9 张荣沂;苏凌峰;刘颖;李胜杰;;基于MATLAB的装载机工作装置运动过程动态仿真[J];黑龙江工程学院学报;2006年04期
10 龚捷;崔玉鑫;;装载机铲掘作业的轨迹规划[J];机械工程学报;2009年07期
相关硕士学位论文 前7条
1 冯治国;装载机用新型数字电液比例先导阀的研究[D];吉林大学;2004年
2 张舒原;装载机智能减阻铲装机理及实现[D];中南大学;2003年
3 韩宏蕾;中国装载机行业发展战略研究[D];山东大学;2006年
4 宁俏俏;装载机铲掘作业轨迹的自适应控制仿真研究[D];吉林大学;2008年
5 王之新;装载机工作装置轨迹的自适应控制仿真研究[D];吉林大学;2009年
6 尹朝忠;地下铲运机工作装置的智能化控制[D];电子科技大学;2009年
7 刘涛;智能装载机作业控制系统的设计及仿真[D];西南交通大学;2009年
,本文编号:1803808
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1803808.html