液控滑阀阀芯运动特性的研究
发布时间:2018-04-26 17:16
本文选题:液控多路阀 + 流量放大阀 ; 参考:《兰州理工大学》2011年硕士论文
【摘要】:液控主阀芯的运动过程决定了主阀阀口面积的变化过程,从而决定了液压缸的运动特性。设计建立了液控多路阀和流量放大阀主阀芯瞬态运动测量试验台,有效测量出液动多路阀主阀芯的瞬态运动过程、阀油口压力瞬变等过程,得出阀口开启和关闭的时间、主阀芯运动最大速度和加速度等特征量。并搭建了AMESim阀控缸仿真平台,将主要特征量和实测进行了对比,吻合良好。本研究对于深入理解液控滑阀的控制特性、阀口面积的设计和系统匹配具有普遍的指导意义。 主要内容如下: 第1章,阐述了本论文研究的背景和意义及多路阀的研究现状和发展趋势。 第2章,对液控多路阀内部流动进行了流场解析,得出了阀口压力损失特性、阀口压力及速度分布、主阀芯所受稳态液动力,并发现了阀口所在位置,为阀口面积解析提供了依据。同时对液控多路阀的阀口面积进行了数值解析,得出了液控多路阀主阀的阀口面积曲线。 第3章,设计建立了液控多路阀主阀芯瞬态运动过程测量试验台,得出了液控多路阀主阀芯的瞬态运动过程、油口压力的瞬变过程、油缸的运动过程等;建立了阀控缸的AMESim仿真模型,仿真得出主阀芯的运动过程和实测值吻合良好,采用此AMESim仿真模型分析了主阀芯结构参数对主阀芯瞬态运动的影响;同时建立了先导阀控主阀芯的AMESim仿真模型,分析了先导阀结构参数对主阀芯瞬态运动的影响。 第4章,设计建立了流量放大阀主阀芯瞬态运动过程测量试验台,得出了流量放大阀主阀芯的瞬态运动过程、油口压力的瞬变过程、油缸的运动过程等。 第5章,采用第3章所建AMESim仿真模型,对液压系统动态特性影响因素进行了仿真研究,得出了阀芯运动速度、异步开启大小、中位回油阀口面积梯度、回油阀口面积梯度等因素对液压系统动态特性的影响。 最后,对本论文的研究工作和成果进行了总结,展望了下一步的研究工作。
[Abstract]:The movement process of the main valve core determines the changing process of the main valve opening area, and thus determines the motion characteristics of the hydraulic cylinder. The transient motion measurement test-bed of the main valve core of the hydraulic multiway valve and the flow amplification valve is designed and established. The transient motion process of the main valve core and the transient pressure transient process of the main valve core are effectively measured, and the opening and closing time of the valve opening and closing are obtained. Main spool movement maximum velocity and acceleration and other characteristics. The simulation platform of AMESim valve control cylinder is built, and the main characteristic quantity is compared with the actual measurement, which is in good agreement. This study is of general significance for understanding the control characteristics of the hydraulic slide valve, the design of valve opening area and the system matching. The main contents are as follows: In chapter 1, the background and significance of this thesis and the research status and development trend of multi-way valve are described. In chapter 2, the flow field of the liquid controlled multiway valve is analyzed, and the pressure loss characteristics, the pressure and velocity distribution, the steady hydraulic power of the main valve core are obtained, and the position of the valve port is found. It provides the basis for the analysis of valve opening area. At the same time, the valve area of the hydraulic multiway valve is analyzed numerically, and the curve of the valve opening area of the main valve is obtained. In the third chapter, the transient motion process of the main valve core of the hydraulic multiway valve is designed and established, and the transient motion process of the main valve core, the transient process of the oil mouth pressure and the motion process of the cylinder are obtained. The AMESim simulation model of valve control cylinder is established, and the simulation results show that the movement process of the main valve core is in good agreement with the measured value. The influence of the structural parameters of the main valve core on the transient motion of the main valve core is analyzed by using the AMESim simulation model. At the same time, the AMESim simulation model of pilot valve control core is established, and the influence of pilot valve structure parameters on the transient movement of main valve core is analyzed. In chapter 4, the transient motion process of the main valve core of the flow amplifier valve is designed and set up, and the transient motion process of the main valve core, the transient process of the pressure of the oil port and the motion process of the cylinder are obtained. In chapter 5, by using the AMESim simulation model established in Chapter 3, the factors affecting the dynamic characteristics of hydraulic system are simulated and studied. The movement speed of valve core, the asynchronous opening size, the area gradient of the median oil return valve are obtained. The effect of the area gradient of return valve on the dynamic characteristics of hydraulic system. Finally, the research work and results of this paper are summarized, and the next research work is prospected.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH137.52
【参考文献】
相关期刊论文 前10条
1 黄宗益;轮式装载机的发展趋势[J];工程机械;1996年03期
2 冯开林,陈康宁,邹广德,高松;先进液压控制技术在工程机械的应用研究[J];工程机械;2002年05期
3 韩学松;;2010年工程机械行业经济运行情况及2011年预测[J];工程机械与维修;2011年03期
4 冀宏;王东升;丁大力;谭正生;刘小平;;非全周开口滑阀阀口面积的计算方法[J];兰州理工大学学报;2008年03期
5 林晓磊 ,徐瑞银 ,郭大洲;液压系统的冲击、振动分析与控制[J];起重运输机械;2005年04期
6 胡国清,张光函,吴持恭;LDA和K-ε紊流模型研究液压集成块流场[J];成都科技大学学报;1996年01期
7 曹秉刚,史维祥,,中野和夫;内流式锥阀液动力及阀芯锥面压强分布的实验研究[J];西安交通大学学报;1995年07期
8 杨强;;液压元件的发展与装备制造业的振兴[J];现代机械;2010年03期
9 周文;主动振动控制技术的发展和应用[J];液压气动与密封;2003年04期
10 李建宇;;液压系统振动噪声产生原因分析[J];液压与气动;2006年05期
相关硕士学位论文 前2条
1 王东升;节流槽滑阀阀口流量系数及稳态液动力计算的研究[D];兰州理工大学;2008年
2 谭正生;装载机流量放大型转向液压系统的减振研究[D];兰州理工大学;2009年
本文编号:1806924
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1806924.html