旋转唇形油封泵汲机理和散热机理研究
发布时间:2018-05-04 18:30
本文选题:旋转唇形油封 + 泵汲率 ; 参考:《重庆大学》2014年硕士论文
【摘要】:目前国内旋转唇形油封的设计,主要采用传统的经验设计和粗略宏观分析的方式,油封的密封性能在生产出来之前不可预见,只能通过实验判断产品合格与否,既费时又费力。人们对油封的研究不少,,但很少研究油封结构参数对油封密封性能和散热的影响。本文针对这一研究现状,利用有限元软件建立安装后旋转唇形油封的二维轴对称模型,得到油封唇口接触宽度和接触压力分布,并结合理论分析的结果,分析重要参数对油封泵汲率和生热量的影响;在此基础上利用CFD软件建立旋转轴和油封唇口润滑油的二维轴对称模型,分析重要参数对油封唇口温度分布的影响。 有限元模拟和理论分析结果表明,油封唇口柯西应力和接触压力最大处位于油封唇尖;由油封唇尖往空气侧和油侧,柯西应力和接触压力减少很快。随过盈量的增大,油封唇口的接触宽度、泵汲率和生热量均增加,而油封唇口最大接触压力先增加后减少。不同弹簧劲度系数下,油封唇口有相似的压力分布;弹簧劲度系数的增大,使得油封簧后内径减少;其对油封生热量影响很大,而对泵汲率影响较小。弹簧中心与油封唇尖的轴向距离增大后,油封唇口接触宽度和生热量减少,而油封泵汲率则增加。随空气侧唇角的增加,油封唇口接触宽度和泵汲率均减少,而生热量则缓慢增加。油封唇口的生热量和泵汲率都随轴转速的增加而快速增加。 CFD模拟结果表明,旋转唇形油封工作过程中温度最高处集中在油封唇口,由唇口摩擦面到轴中心温度逐渐降低;油封唇口的温度最高,从唇口往两侧温度逐渐降低;轴的温度高于润滑油的温度,空气侧的温度要高于润滑油侧的温度。在轴转速不变的情况下,油封唇口摩擦面最高温度随过盈量、弹簧劲度系数增加而增加,而随空气侧唇角的增加缓慢减少;在其它条件不变的情况下,油封唇口的摩擦面最高温度随轴转速的增加几乎呈线性增加。
[Abstract]:At present, the domestic rotary lip seal design mainly adopts the traditional experience design and the rough macroscopic analysis way, the seal performance of the oil seal can not be predicted before the production, can only judge whether the product is qualified or not through the experiment, which is time-consuming and laborious. Many researches have been done on oil seal, but the influence of structure parameters on seal performance and heat dissipation has been seldom studied. In this paper, a two-dimensional axisymmetric model of rotating lip seal after installation is established by using finite element software. The contact width and contact pressure distribution are obtained, and the results of theoretical analysis are combined. Based on the analysis of the influence of important parameters on the swabbing rate and heat generation of the oil seal pump, a two-dimensional axisymmetric model of rotary shaft and oil seal lip lubricating oil was established by using CFD software, and the influence of important parameters on the temperature distribution of the oil seal lip was analyzed. The results of finite element simulation and theoretical analysis show that the maximum Cauchy stress and contact pressure are located at the tip of the oil seal, and the Cauchy stress and contact pressure decrease rapidly from the tip of the oil seal to the air side and the oil side. With the increase of interference volume, the contact width, pump swabbing rate and heat generation of the oil seal lip increase, while the maximum contact pressure of the oil seal lip increases first and then decreases. Under different spring stiffness coefficient, the oil seal lip has similar pressure distribution; the increase of spring stiffness coefficient reduces the inner diameter of oil seal spring; it has a great effect on the heat generation of oil seal, but has little effect on pump swabbing rate. When the axial distance between the spring center and the oil seal lip tip increases, the contact width and heat generation of the oil seal lip decrease, while the oil seal pump swabbing rate increases. With the increase of the air side lip angle, the contact width and pump swabbing rate of the oil seal lip decrease, while the heat generation increases slowly. The heat generation and pump swabbing rate of oil seal lip increased rapidly with the increase of shaft speed. CFD simulation results show that the highest temperature is concentrated on the lip of the rotary lip seal, and the temperature from the lip friction surface to the center of the shaft decreases gradually, the temperature of the oil seal lip is the highest, and the temperature from the lip to the two sides decreases gradually. The temperature of the shaft is higher than the temperature of the lubricating oil, and the temperature of the air side is higher than the temperature of the lubricating oil side. Under the condition of constant axial speed, the maximum temperature of the friction surface of the oil seal lip increases with the interference, the spring stiffness coefficient increases, but decreases slowly with the increase of the air side lip angle. The maximum temperature of friction surface of oil seal lip increases linearly with the increase of axial speed.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TH38
【参考文献】
相关期刊论文 前10条
1 张佳佳;赵良举;杜长春;苏晓燕;吴庄俊;饶文姬;;唇形油封结构参数对摩擦面温度的影响[J];合肥工业大学学报(自然科学版);2011年10期
2 赵良举;苏晓燕;杜长春;张佳佳;吴庄俊;赵向雷;;旋转唇形油封泵吸效应及影响因素分析[J];合肥工业大学学报(自然科学版);2011年12期
3 赵良举;张佳佳;杜长春;苏晓燕;;唇形油封动态散热仿真研究[J];计算机仿真;2011年11期
4 左正兴,廖日东;12150柴油机橡胶密封圈的有限元分析[J];内燃机工程;1996年02期
5 于政武;影响骨架式橡胶油封动密封的因素及其对策[J];农业机械学报;1989年01期
6 吴庄俊;赵良举;杜长春;洪玉意;李云飞;赵向雷;;结构参数对径向唇形密封圈密封性能的影响研究[J];合肥工业大学学报(自然科学版);2012年11期
7 钱德森;;曲轴橡胶唇口油封的密封机理及其主要结构参数[J];内燃机工程;1984年02期
8 周琼;李正美;唐建平;安琦;;唇形密封圈润滑性能的数值模拟[J];华东理工大学学报(自然科学版);2012年01期
9 朱玉民;国内外橡胶骨架油封的现状及发展趋势[J];汽车研究与开发;2000年02期
10 李建国;丁玉梅;杨卫民;谭晶;;油封密封性能的有限元分析[J];润滑与密封;2006年10期
本文编号:1844123
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1844123.html