当前位置:主页 > 科技论文 > 机械论文 >

基于瓶颈工序的多资源多目标机械加工车间排产方法与系统研究

发布时间:2018-05-19 13:21

  本文选题:瓶颈工序 + 多资源约束 ; 参考:《重庆大学》2012年硕士论文


【摘要】:瓶颈工序是机械加工过程中经常遇到的制约整个生产流程正常进行的生产实际问题,流程中存在的瓶颈不仅限制了一个流程的产出速度,而且影响了其它环节生产能力的发挥。瓶颈工序的产生通常与瓶颈资源息息相关,而物料、加工装备、工装和刀具等多种资源都有可能成为制约生产的瓶颈资源。 同时,随着制造业的发展,机械加工车间排产的优化目标已逐渐从单一目标发展成为多目标,重点包括加工周期、生产成本和能耗等等。因此,如何综合考虑基于多资源的瓶颈工序约束,建立面向多优化目标的机械加工车间排产方法对优化车间排产,实现资源合理配置和生产效益最大化具有非常重要的学术和工程意义。 本文首先简述了机械加工车间排产问题的研究现状,针对现有研究中大多是基于单资源单目标排产的不足,根据机械加工车间排产问题的特点,建立了一种基于多资源约束的多优化目标机械加工车间排产模型。 其次,针对多目标遗传算法早熟收敛的缺陷,结合免疫遗传算法和约束理论,提出了一种基于瓶颈工序的多资源多目标机械加工车间排产算法。首先利用生物免疫系统中抗体多样性的产生及保持机理保证了Pareto解集的多样性;再通过设计算法的编码方案、解码方案和免疫算子实现了约束理论主导的瓶颈资源主导非瓶颈资源、瓶颈资源产销率决定整个系统产销率的思想,有效改善了传统免疫遗传算法在性能和求解质量等方面存在的不足;最后通过实例仿真验证了该算法的可行性和有效性。 最后,基于上述方法和技术,设计并开发了一种基于机械加工车间MES的排产管理子系统,,包括排产数据管理和作业排产两大功能。并将本文研究内容和系统在某机械加工车间排产中进行了应用,取得了良好的应用效果。
[Abstract]:The bottleneck process is a practical problem that restricts the normal progress of the whole production process. The bottleneck in the process not only limits the output speed of one process, but also affects the production capacity of other links. The production of bottleneck processes is usually closely related to the bottleneck resources, and materials, processing equipment, tooling, cutting tools and other resources may become the bottleneck resources that restrict production. At the same time, with the development of manufacturing industry, the optimization goal of production scheduling in machining workshop has gradually developed from a single objective to a multi-objective, with emphasis on processing cycle, production cost and energy consumption and so on. Therefore, how to synthetically consider the bottleneck process constraints based on multi-resource and establish a multi-optimization goal oriented scheduling method for the optimization of workshop scheduling. It is of great academic and engineering significance to realize the rational allocation of resources and maximize the benefit of production. In this paper, the current situation of production scheduling in machining workshop is briefly introduced. In view of the shortage of single resource and single target in the present research, according to the characteristics of production scheduling in machining workshop, A production scheduling model based on multi-resource constraints for multi-objective machining workshop is established. Secondly, aiming at the defect of premature convergence of multi-objective genetic algorithm, combining immune genetic algorithm and constraint theory, a multi-resource and multi-objective scheduling algorithm based on bottleneck process is proposed. Firstly, the diversity of Pareto solution set is guaranteed by using the mechanism of producing and preserving antibody diversity in the biological immune system, and then the coding scheme of the algorithm is designed. The decoding scheme and immune operator realize the idea that bottleneck resource dominates non-bottleneck resource, and bottleneck resource production and marketing rate determines the production and marketing rate of the whole system. The shortcomings of traditional immune genetic algorithm in performance and solution quality are effectively improved. Finally, the feasibility and effectiveness of the algorithm are verified by an example. Finally, based on the above methods and techniques, a production scheduling management subsystem based on MES in machining workshop is designed and developed, which includes two functions: scheduling data management and job scheduling. The research content and system of this paper are applied in the production arrangement of a machining workshop, and good application results have been obtained.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH186

【参考文献】

相关期刊论文 前10条

1 许晓栋;李从心;;免疫遗传算法在车间作业调度中的应用[J];东南大学学报(自然科学版);2006年03期

2 谷峰,陈华平,卢冰原,古春生;粒子群算法在柔性工作车间调度中的应用[J];系统工程;2005年09期

3 徐俊刚,戴国忠,王宏安;生产调度理论和方法研究综述[J];计算机研究与发展;2004年02期

4 韩学东,洪炳昒,孟伟;基于疫苗自动获取与更新的免疫遗传算法[J];计算机研究与发展;2005年05期

5 陈胜华;陈劲杰;陈仕文;李玮;;基于TOC的车间调度系统研究[J];机械管理开发;2010年02期

6 张超勇,饶运清,李培根,刘向军;求解作业车间调度问题的一种改进遗传算法[J];计算机集成制造系统;2004年08期

7 饶运清,李培根,李淑霞,朱传军,张超勇,金愿华,张晴;制造执行系统的现状与发展趋势[J];机械科学与技术;2002年06期

8 王龙生,叶文华;一种新型的作业车间调度算法的研究与实现[J];机械科学与技术;2004年10期

9 张超勇;董星;王晓娟;李新宇;刘琼;;基于改进非支配排序遗传算法的多目标柔性作业车间调度[J];机械工程学报;2010年11期

10 张纪会,高齐圣,徐心和;自适应蚁群算法[J];控制理论与应用;2000年01期

相关博士学位论文 前2条

1 潘全科;智能制造系统多目标车间调度研究[D];南京航空航天大学;2003年

2 鞠全勇;智能制造系统生产计划与车间调度的研究[D];南京航空航天大学;2007年



本文编号:1910262

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1910262.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ec491***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com